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STAN WAGON 

The Ultimate Flat Tire 

The Flattest Wheel 
How flat can a tire be and still roll? Can something as straight 
as a straight line be used as a wheel? Sure, if, as explained 
below, one uses some care in defining its center. The insight 
is due to G. B. Robison in 1960 [1]; he also realized that by 
suitably truncating a doubly infinite straight line one could 
form a square wheel, which would indeed roll on a properly 
shaped road. 

To set the stage we must be precise about what "roll" means. 
A round circle rolls on a straight line in the sense that the 
center of the wheel stays horizontal. So for a non-circular 

wheel, we will say that it rolls on a curvy road if the center of 
the wheel moves in a horizontal line as the wheel moves 

without slipping along the road. Here I explain why a square 
rolls on a sequence of inverted catenaries. (Recall that a cat 

enary is the curve made by a flexible chain allowed to hang 
with both ends held at the same height; its equation is sim 

ply y 
= coshx = 

(ex + e~x)/2.) 

As the Wheel Turns 

Suppose the road is given as a function)) =f(x) and the wheel 
is described in polar coordinates, r = r(0). An example is 

given in Figure 1, where/(x) is cos(x)- Vl7 and 

r(e) = cos 2arctan 
^(JV7 -1)tan[20] 

- Vl7 . 

As the wheel rolls, the distance from its center to the road must 
match the depth of the road: this means that the two dashed 
lines have equal length. And the road surface and wheel cir 
cumference must match, so the two thick curves must have 

equal arc length. These conditions will allow us to relate the 

polar equation r = r(6) of the wheel to the Cartesian equation 
y =f(x) of the road on which it rolls smoothly. The graph on 
the right shows the important function 0(x), which tells us the 

polar angle of the straight-down radius when the wheel has 
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rolled enough so that its center is above the point x on the x 
axis. That is, the segment joining the center of the wheel to the 

point on the wheel touching the road at x made the angle 6 
with the positive x-axis before the wheel started rolling. We are 

using standard polar coordinates, so 0(0) 
= -jt/2. 

Now, the condition arising from the equality of the dashed 
lines leads to the radius condition 

r[0(x)] 
= 

-f(x). (1) 
The negative sign is included because r should be positive 
but/(x), which defines the road, will be negative. Note that 
the initial condition becomes r[0(0)] =-/(0), or r(-jt/2) 

= 

-f(0). 
Next we match the arc lengths. The road length is given 

by the familiar formula 

while the wheel circumference is the slightly less familiar 
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The author taking a ride. Photos by Deanna Haunsperger. 

Equating these integrals, differentiating both sides with 

respect tox, and squaring yields: 

But the radius condition (1) can be differentiated with 

respect to x to yield (dr/dO)(d6/dx)=-f'(x). Substituting into 

(2) yields: 

which simplifies to dO/dx = l/r(0). This is what we want: a 

differential equation, quite simple as it turns out, that relates 
the rolling function 9(x) and the shape of the wheel r(0). The 
variables separate into r (6) d6 = dx so integration and the ini 
tial conditions can be used to get x in terms of 0 as follows: 

x = 
je?rie)dO (3) 2 

If we can solve this for 0(x), we will know the shape of the 

road, since, for any x, f(x) 
= 

-r[6(x)]. (It is an interesting ex 
ercise to show that if we match tangent slopes instead of 

matching arc lengths we get the same fundamental relation 

ship (3), in a way that avoids the arc length integrals.) 

Why a Catenary? 
Now consider the straight-line wheel with polar equation 
r = -esc 6, ?7t<6 < 0. We will take the origin as center of the 
wheel and perform the analysis described above. 

To get the rolling relationship we evaluate the integral of 

(3): 

x=\-^?de. (4) 

Standard calculus techniques, using the facts that the 6 
domain is (-jt,0) and the initial condition isx(-jr/2) 

= 0, tell 
us that* = -log(-tan(0/2)). 

This inverts to 6(x) 
= 

2arctan(-<r*). It follows that the 
road we seek is the graph of y 

= 
r[6(x)] 

= 
-csc[2arctan(-?"x)]. 

This simplifies to just); =-(ex + -e~x)/2, which is the familiar 

q 

2 / r = r[0(x)] y/ 

^ 2 1 1 4 6 8 io / 
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\ ' \ 2 4 /> 8 10 12 14 

71 1/ 
2 

Figure 1. 77*? left diagram shows a wheel about to begin rolling on a cosine-shaped road. The two dashed lines must have equal length, and the two 
thick curves must also have equal length. The image on the right shows the 0 versus x relationship. 
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Figure 2.^4 wheel that is a straight line rolls on a catenary so that the hub, the point that started at (0,0), stays horizontal. The close-up view shows that 
when the center is at arcsinh(l), the line makes a 45? angle with the horizontal. 

catenary arch, -coshx. Thus our straight line will roll on a 

catenary, as shown in Figure 2. 

A Square Wheel 
Now that we understand why the straight line rolls on the 

catenary it is easy to see how to handle a square wheel. Just 
truncate the catenary at the point at which the rolling straight 
line will make a 45? angle with the horizontal. Then when an 

identical truncated catenary is placed beside the first, the 

cusp will have a 90? angle; when a second straight line is 

placed perpendicular to the first one, we will have a rolling 
right angle. Do the same for the other angles of the square 
and, presto, a square wheel. Figure 3 shows how the wheel 

rolls; note that the locus of one of the corners occasionally 
goes backward, reminiscent of the classic puzzle about the 
locus of the point at the bottom of the flanged wheel of a 
train. 

Many people, on seeing the rolling square, wonder if a 

rolling pentagon or hexagon is possible. Indeed, essentially 
the same argument shows that any regular n-gon will roll on 
a catenary road for any n > 3. The triangular case is actually 
impossible in practice, the vertex of the triangle crashes into 
the next bump before it can settle into the cusp. It also crashes 

into the previous bump as it climbs out of a cusp. So, in 

theory you could just lay the road as you need it and rip it up 
as you pass over it, but that would be slow going. 

Is the Ride Smooth? 
There is a subtle difference between a square wheel and a 
round one. For a normal bike, x is proportional to 0, where 
x is the distance traveled and 6 is the angle pedaled. If you 
pedal more, you travel farther, and the correspondence is 
linear: pedal twice as much and you travel twice as far. This 
is almost true of the square wheel, but not quite. Figure 4 
shows this relationship for the square wheel, with a straight 
line shown for comparison. The discrepancy is so small that 
it cannot be felt by a rider. (To see more clearly the difference 
from linearity, examine the Maclaurin series of 6(x), which is 
2 arctan (-?"*).) 

A Working Model 

Inspired by various models I had seen (a small one at San 
Francisco's Exploratorium and a larger one built by the Cen 
ter of Science and Industry in Columbus, Ohio), I asked 

Figure 3. When a square rolls on a sequence of appropriately truncated catenaries, the ride is smooth in the sense that the hub of the wheels experiences 
no up or down motion. The dots show the locus of a corner. 
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Figure 4. The 6 vs. x relationship for a square wheel. The graph is very close to a straight line (dashed) so that even though horizontal speed is not a 
linear function of pedaling speed, the difference is very small, and not detectable on a full-size square-wheel bicycle. 

Loren Kellen, a neighbor who knows carpentry and bicycles, 
if he could build a working model of a square-wheel bike. He 

was enthusiastic and six months later it was done; the full 
size model (the road is 23 feet long) is on permanent display 
in the science center at Macalester and is open for public 
riding. We decided on a three-wheel design for stability. Fric 
tion is a big concern: there must be enough friction between 
the tire and the road to prevent slippage, or "creep" as it is 
called by professionals in catenary road-building. Also the 
bike frame had to be sawn in two and rewelded so that the 
frame would fit the road, whose spacing is in turn decided 

by the size of the square wheels. I thought steering would be 
a problem, but in fact one can steer the thing provided one 
does so at the top of each arch! 

More Surprises 
Thanks to the power of modern software, an investigation 
such as this often leads to new insights. Leon Hall and I, 

after seeing the Exploratorium model, made an extensive 

investigation into the shapes of various road-wheel pairs. One 

surprising discovery is related to the age-old definition of a 

cycloid as the locus of a point on a round wheel rolling on a 

straight road. We found that the locus of a point of a limacon 
as it rolls smoothly on a trochoid (itself a type of cycloid) is 
also an exact cycloid! Thus the cycloid we know and love can 
be viewed as one of a matched pair (see Figure 5). See [2] for 
more such relationships. Here is a final puzzle, due to 
Robison: Find the unique road-wheel pair for which the road 
and wheel have identical shapes. | 
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Figure 5. When a limagon rolls on a trochoid, the locus of one of the wheel's points is an exact cycloid. 
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