C9. Douglas Lind; suggested by editors. Show that there are infinitely many numbers that appear at least six times in Pascal's triangle.
Solution. For $m \geq 3$, $m$ occurs twice as $\binom{m}{1}$ and $\binom{m}{m-1}$. By symmetry, it will suffice to find infinitely many values of $m$ with at least two more occurrences in the left half of the triangle.

There are several small examples of such pairs of occurrences: $120=\binom{10}{3}=\binom{16}{2}, 210=$ $\binom{10}{4}=\binom{21}{2}, 1540=\binom{22}{3}=\binom{56}{2}$, and $3003=\binom{15}{5}=\binom{14}{6}$. The last of these exhibits the intriguing relationship $\binom{n}{k}=\binom{n-1}{k+1}$. To solve the problem, we will find infinitely many solutions of this equation with $k>1$ and $k+1<(n-1) / 2$.

The equation $\binom{n}{k}=\binom{n-1}{k+1}$ is equivalent to $n(k+1)-(n-k)(n-k-1)=0$. We claim that for every positive integer $j$, this equation is satisfied by the values $n=F_{2 j+2} F_{2 j+3}$ and $k=F_{2 j} F_{2 j+3}$, where $F_{i}$ is the $i$ th Fibonacci number. To see why, note that with these values we have $n-k=\left(F_{2 j+2}-F_{2 j}\right) F_{2 j+3}=F_{2 j+1} F_{2 j+3}$, and therefore

$$
\begin{aligned}
n(k+1)-(n-k)(n-k-1) & =F_{2 j+2} F_{2 j+3}\left(F_{2 j} F_{2 j+3}+1\right)-F_{2 j+1} F_{2 j+3}\left(F_{2 j+1} F_{2 j+3}-1\right) \\
& =F_{2 j+3}\left(F_{2 j+2} F_{2 j} F_{2 j+3}+F_{2 j+2}-F_{2 j+1}^{2} F_{2 j+3}+F_{2 j+1}\right) \\
& =F_{2 j+3}\left(F_{2 j+2} F_{2 j} F_{2 j+3}-F_{2 j+1}^{2} F_{2 j+3}+F_{2 j+3}\right) \\
& =F_{2 j+3}^{2}\left(F_{2 j+2} F_{2 j}-F_{2 j+1}^{2}+1\right)=0,
\end{aligned}
$$

where the last step uses the well-known identity $F_{i+1} F_{i-1}-F_{i}^{2}=(-1)^{i}$.
The case $j=1$ yields $n=15$ and $k=5$, the example we found earlier. When $j=2$ we get $n=104$ and $k=39$, and indeed $\binom{104}{39}=\binom{103}{40}=61218182743304701891431482520$.
Editorial comments. The appearance of the Fibonacci numbers in this solution can be explained by reference to classic problem C2 (this Monthly, Feb. 2022, p. 194). Viewing the equation $n(k+1)-(n-k)(n-k-1)=0$ as a quadratic in $n$ and applying the quadratic formula yields

$$
n=\frac{3 k+2 \pm \sqrt{5 k^{2}+8 k+4}}{2} .
$$

For $n$ to be an integer, we need $5 k^{2}+8 k+4$ to be a perfect square. Setting $5 k^{2}+8 k+4=t^{2}$ and solving for $k$ by the quadratic formula, we get

$$
k=\frac{-4 \pm \sqrt{5 t^{2}-4}}{5} .
$$

For $k$ to be an integer, $5 t^{2}-4$ must be a perfect square, and the solution to classic problem C2 (March 2022, pp. 293-294) shows that this happens if and only if $t$ is an odd-indexed Fibonacci number. Setting $t=F_{2 i+1}$ and applying Fibonacci identities leads to the values

$$
n=F_{i+1} F_{i+2}+\frac{(-1)^{i+1}-1}{5}, \quad k=F_{i-1} F_{i+2}+\frac{4\left((-1)^{i+1}-1\right)}{5} .
$$

These are integers when $i$ is odd, and setting $i=2 j+1$ leads to the values used in the solution.

This result is due to Lind [1; see also 3, 4]. It is related to a 1971 conjecture of Singmaster [2; see also 6]. For an integer $m$ with $m \geq 2$, let $S_{m}$ be the number of times $m$ appears in Pascal's triangle. Singmaster conjectured that $S_{m}$ is bounded, and suggested that 10 or

12 might be a bound. The problem shows that 5 cannot be an asymptotic bound. It turns out that $S_{3003}=8$; there are no other known values of $m$ for which $S_{m} \geq 8$. The sequence of binomial coefficients for which $S_{m} \geq 6$ starts $120,210,1540,3003,7140,11628,24310$, 61218182743304701891431482520 (see [5]).

References.

1. D. Lind, The quadratic field $Q(\sqrt{5})$ and a certain Diophantine equation, Fib. Quart. 6 (1968) 86-94, https://www.fq.math.ca/Scanned/6-3/lind.pdf.
2. D. Singmaster, How often does an integer occur as a binomial coefficient?, Amer. Math. Monthly 78 (1971) 385-386.
3. D. Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fib. Quart. 13 (1975) 295-298, https://www.fq.math.ca/Issues/13-4.pdf.
4. C. A. Tovey, Multiple occurrences of binomial coefficients, Fib. Quart. 356-358.
5. OEIS sequences: https://oeis.org/A003015, https://oeis.org/A003016, https: //oeis.org/A090162.
6. K. Matomäki, M. Radziwiłł, X. Shao, T. Tao, and J. Teräväinen, Singmaster's conjecture in the interior of Pascal's triangle, https://arxiv.org/abs/2106.03335.
