Daniel J. Velleman

Fix an interval $I=[c, d) \subseteq[0,1)$, and let L be the length of the interval: $L=d-c>0$.
For any $a \in[0,1)$ and any irrational $\xi>0$, let $x_{n}(a, \xi)=a+n \xi \bmod 1$. For $N \in \mathbb{Z}^{+}$, let $[N]=\{1,2, \ldots, N\}$, and let

$$
\begin{aligned}
s_{N}(a, \xi) & =\left|\left\{n \in[N]: x_{n}(a, \xi) \in I\right\}\right|, \\
f_{N}(a, \xi) & =\frac{s_{N}(a, \xi)}{N} .
\end{aligned}
$$

We want to prove: $\lim _{N \rightarrow \infty} f_{N}(a, \xi)=L$.
We start with a couple of lemmas:
Lemma 1. Suppose that $x<y$. Then

$$
y-x-1<|[x, y) \cap \mathbb{Z}|<y-x+1
$$

Proof. It is not hard to see that $|[x, y) \cap \mathbb{Z}|=\lceil y\rceil-\lceil x\rceil$. The conclusion now follows from the following facts:

$$
\lceil y\rceil-\lceil x\rceil=y-x+(\lceil y\rceil-y)-(\lceil x\rceil-x), \quad 0 \leq\lceil x\rceil-x,\lceil y\rceil-y<1 .
$$

Lemma 2. For sufficiently large N,

$$
L-2 \xi<f_{N}(a, \xi)<L+2 \xi
$$

Proof. Since a and ξ will be fixed throughout the proof of the lemma, we write x_{n}, s_{N}, and f_{N} for $x_{n}(a, \xi), s_{N}(a, \xi)$, and $f_{N}(a, \xi)$.

Notice that for any positive integer $n, x_{n} \in I$ if and only if there is some integer $k \geq 0$ such that

$$
k+c \leq a+n \xi<k+d
$$

Let

$$
B_{k}=\left\{n \in \mathbb{Z}^{+}: k+c \leq a+n \xi<k+d\right\} .
$$

Then it is easy to see that the sets B_{k} form a partition of $\left\{n \in \mathbb{Z}^{+}: x_{n} \in I\right\}$. The definition of B_{k} is equivalent to

$$
B_{k}=\left\{n \in \mathbb{Z}^{+}: \frac{k+c-a}{\xi} \leq n<\frac{k+d-a}{\xi}\right\}=\left[\frac{k+c-a}{\xi}, \frac{k+d-a}{\xi}\right) \cap \mathbb{Z}^{+} .
$$

Since $a \in[0,1)$, if $k \geq 1$ then $(k+c-a) / \xi>0$, so we can apply Lemma 1 to conclude that

$$
\frac{k+d-a}{\xi}-\frac{k+c-a}{\xi}-1<\left|B_{k}\right|<\frac{k+d-a}{\xi}-\frac{k+c-a}{\xi}+1 .
$$

Since $d-c=L$ this simplifies to

$$
\frac{L}{\xi}-1<\left|B_{k}\right|<\frac{L}{\xi}+1 .
$$

For $k=0$, the restriction that elements of B_{0} must be positive integers may reduce the number of elements, so all we can say is that

$$
\left|B_{0}\right|<\frac{L}{\xi}+1
$$

Now consider any $N \in \mathbb{Z}^{+}$, and let $K=\lfloor a+N \xi\rfloor$. We will assume that N is large enough that $K \geq 2$. Then

$$
\left\{n \in[N]: x_{n} \in I\right\}=\bigcup_{k=0}^{K-1} B_{k} \cup\left(B_{K} \cap[N]\right)
$$

Using the bounds on the sizes of the sets B_{k}, we conclude that

$$
(K-1)\left(\frac{L}{\xi}-1\right)<s_{N}<(K+1)\left(\frac{L}{\xi}+1\right)
$$

By the definition of K, we have

$$
K \leq a+N \xi<K+1,
$$

so

$$
\frac{K-a}{\xi} \leq N<\frac{K+1-a}{\xi}
$$

Since $a \in[0,1)$, it follows that

$$
\frac{K-1}{\xi}<N<\frac{K+1}{\xi} .
$$

Putting together our bounds on s_{N} and N, we have

$$
\frac{(K-1)(L / \xi-1)}{(K+1) / \xi}<\frac{s_{N}}{N}<\frac{(K+1)(L / \xi+1)}{(K-1) / \xi}
$$

which simplifies to

$$
\frac{K-1}{K+1} \cdot(L-\xi)<f_{N}<\frac{K+1}{K-1} \cdot(L+\xi)
$$

It is clear that if K is large enough, then we will have

$$
\frac{K-1}{K+1} \cdot(L-\xi)>L-2 \xi, \quad \frac{K+1}{K-1} \cdot(L+\xi)<L+2 \xi
$$

and therefore

$$
L-2 \xi<f_{N}<L+2 \xi
$$

And by choosing N large enough, we can ensure that K is large enough to get this conclusion. This proves the lemma.

Now we're ready to prove that $\lim _{N \rightarrow \infty} f_{N}(a, \xi)=L$. Suppose $\epsilon>0$. Using the density of $(n \xi \bmod 1)$ in $[0,1)$, choose some M such that $0<(M \xi \bmod 1)<\epsilon / 2$. Let $\bar{\xi}=M \xi \bmod 1$. Now we break the sequence $\left(x_{n}(a, \xi)\right)$ up into M subsequences, as follows:

$$
\begin{align*}
& x_{1}(a, \xi), x_{1+M}(a, \xi), x_{1+2 M}(a, \xi), \ldots \\
& x_{2}(a, \xi), x_{2+M}(a, \xi), x_{2+2 M}(a, \xi), \ldots \tag{1}\\
& \quad \vdots \\
& x_{M}(a, \xi), x_{2 M}(a, \xi), x_{3 M}(a, \xi), \ldots
\end{align*}
$$

Notice that for any $n \in \mathbb{Z}^{+}$,

$$
x_{1+(n-1) M}(a, \xi)=a+(1+(n-1) M) \xi \bmod 1=(a+\xi-M \xi)+n \bar{\xi} \bmod 1
$$

If we let $a_{1}=a+\xi-M \xi \bmod 1$, then this means that

$$
x_{1+(n-1) M}(a, \xi)=x_{n}\left(a_{1}, \bar{\xi}\right) .
$$

In other words, the first row in (1) is the sequence $\left(x_{n}\left(a_{1}, \bar{\xi}\right)\right)$. Similarly, we can define numbers $a_{2}, \ldots, a_{M} \in[0,1)$ so that for $1 \leq k \leq M$, row k of (1) is $\left(x_{n}\left(a_{k}, \bar{\xi}\right)\right)$.

Now let $N \geq M$ be any integer. For $1 \leq k \leq M$, let $N_{k}=\lfloor(N-k) / M\rfloor+1$. Then the first N terms of $\left(x_{n}(a, \xi)\right)$ consist of the first N_{k} terms of $\left(x_{n}\left(a_{k}, \bar{\xi}\right)\right)$, for $1 \leq k \leq M$. Therefore

$$
s_{N}(a, \xi)=\sum_{k=1}^{M} s_{N_{k}}\left(a_{k}, \bar{\xi}\right),
$$

so

$$
f_{N}(a, \xi)=\frac{\sum_{k=1}^{M} s_{N_{k}}\left(a_{k}, \bar{\xi}\right)}{N}=\sum_{k=1}^{M} \frac{N_{k}}{N} \cdot \frac{s_{N_{k}}\left(a_{k}, \bar{\xi}\right)}{N_{k}}=\sum_{k=1}^{M} \frac{N_{k}}{N} \cdot f_{N_{k}}\left(a_{k}, \bar{\xi}\right) .
$$

In other words, $f_{N}(a, \xi)$ is a weighted average of the numbers $f_{N_{k}}\left(a_{k}, \bar{\xi}\right)$.
Now we apply Lemma 2 to the sequences $\left(x_{n}\left(a_{k}, \bar{\xi}\right)\right)$ to conclude that if N_{k} is sufficiently large, then $L-2 \bar{\xi}<f_{N_{k}}\left(a_{k}, \bar{\xi}\right)<L+2 \bar{\xi}$. Since $\bar{\xi}<\epsilon / 2$, this means that $L-\epsilon<f_{N_{k}}\left(a_{k}, \bar{\xi}\right)<$ $L+\epsilon$. By choosing N sufficiently large, we can ensure that his holds for all k from 1 to M, and therefore $L-\epsilon<f_{N}(a, \xi)<L+\epsilon$, as required.

