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Fix an interval I = [c, d) ⊆ [0, 1), and let L be the length of the interval: L = d− c > 0.
For any a ∈ [0, 1) and any irrational ξ > 0, let xn(a, ξ) = a+ nξ mod 1. For N ∈ Z+, let

[N ] = {1, 2, . . . , N}, and let

sN(a, ξ) = |{n ∈ [N ] : xn(a, ξ) ∈ I}|,

fN(a, ξ) =
sN(a, ξ)

N
.

We want to prove: limN→∞ fN(a, ξ) = L.
We start with a couple of lemmas:

Lemma 1. Suppose that x < y. Then

y − x− 1 < |[x, y) ∩ Z| < y − x+ 1.

Proof. It is not hard to see that |[x, y) ∩ Z| = dye − dxe. The conclusion now follows from
the following facts:

dye − dxe = y − x+ (dye − y)− (dxe − x), 0 ≤ dxe − x, dye − y < 1.

Lemma 2. For sufficiently large N ,

L− 2ξ < fN(a, ξ) < L+ 2ξ.

Proof. Since a and ξ will be fixed throughout the proof of the lemma, we write xn, sN , and
fN for xn(a, ξ), sN(a, ξ), and fN(a, ξ).

Notice that for any positive integer n, xn ∈ I if and only if there is some integer k ≥ 0
such that

k + c ≤ a+ nξ < k + d.

Let
Bk = {n ∈ Z+ : k + c ≤ a+ nξ < k + d}.

Then it is easy to see that the sets Bk form a partition of {n ∈ Z+ : xn ∈ I}. The definition
of Bk is equivalent to

Bk =

{
n ∈ Z+ :

k + c− a
ξ

≤ n <
k + d− a

ξ

}
=

[
k + c− a

ξ
,
k + d− a

ξ

)
∩ Z+.

Since a ∈ [0, 1), if k ≥ 1 then (k + c− a)/ξ > 0, so we can apply Lemma 1 to conclude that

k + d− a
ξ

− k + c− a
ξ

− 1 < |Bk| <
k + d− a

ξ
− k + c− a

ξ
+ 1.

Since d− c = L this simplifies to

L

ξ
− 1 < |Bk| <

L

ξ
+ 1.
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For k = 0, the restriction that elements of B0 must be positive integers may reduce the
number of elements, so all we can say is that

|B0| <
L

ξ
+ 1.

Now consider any N ∈ Z+, and let K = ba+Nξc. We will assume that N is large enough
that K ≥ 2. Then

{n ∈ [N ] : xn ∈ I} =
K−1⋃
k=0

Bk ∪ (BK ∩ [N ]).

Using the bounds on the sizes of the sets Bk, we conclude that

(K − 1)

(
L

ξ
− 1

)
< sN < (K + 1)

(
L

ξ
+ 1

)
By the definition of K, we have

K ≤ a+Nξ < K + 1,

so
K − a
ξ
≤ N <

K + 1− a
ξ

.

Since a ∈ [0, 1), it follows that

K − 1

ξ
< N <

K + 1

ξ
.

Putting together our bounds on sN and N , we have

(K − 1)(L/ξ − 1)

(K + 1)/ξ
<
sN
N

<
(K + 1)(L/ξ + 1)

(K − 1)/ξ
,

which simplifies to
K − 1

K + 1
· (L− ξ) < fN <

K + 1

K − 1
· (L+ ξ).

It is clear that if K is large enough, then we will have

K − 1

K + 1
· (L− ξ) > L− 2ξ,

K + 1

K − 1
· (L+ ξ) < L+ 2ξ,

and therefore
L− 2ξ < fN < L+ 2ξ.

And by choosing N large enough, we can ensure that K is large enough to get this conclusion.
This proves the lemma.
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Now we’re ready to prove that limN→∞ fN(a, ξ) = L. Suppose ε > 0. Using the density of
(nξ mod 1) in [0, 1), choose some M such that 0 < (Mξ mod 1) < ε/2. Let ξ̄ = Mξ mod 1.
Now we break the sequence (xn(a, ξ)) up into M subsequences, as follows:

x1(a, ξ), x1+M(a, ξ), x1+2M(a, ξ), . . .

x2(a, ξ), x2+M(a, ξ), x2+2M(a, ξ), . . .

...

xM(a, ξ), x2M(a, ξ), x3M(a, ξ), . . . .

(1)

Notice that for any n ∈ Z+,

x1+(n−1)M(a, ξ) = a+ (1 + (n− 1)M)ξ mod 1 = (a+ ξ −Mξ) + nξ̄ mod 1.

If we let a1 = a+ ξ −Mξ mod 1, then this means that

x1+(n−1)M(a, ξ) = xn(a1, ξ̄).

In other words, the first row in (1) is the sequence (xn(a1, ξ̄)). Similarly, we can define
numbers a2, . . . , aM ∈ [0, 1) so that for 1 ≤ k ≤M , row k of (1) is (xn(ak, ξ̄)).

Now let N ≥ M be any integer. For 1 ≤ k ≤ M , let Nk = b(N − k)/Mc + 1. Then
the first N terms of (xn(a, ξ)) consist of the first Nk terms of (xn(ak, ξ̄)), for 1 ≤ k ≤ M .
Therefore

sN(a, ξ) =
M∑
k=1

sNk
(ak, ξ̄),

so

fN(a, ξ) =

∑M
k=1 sNk

(ak, ξ̄)

N
=

M∑
k=1

Nk

N
· sNk

(ak, ξ̄)

Nk

=
M∑
k=1

Nk

N
· fNk

(ak, ξ̄).

In other words, fN(a, ξ) is a weighted average of the numbers fNk
(ak, ξ̄).

Now we apply Lemma 2 to the sequences (xn(ak, ξ̄)) to conclude that if Nk is sufficiently
large, then L−2ξ̄ < fNk

(ak, ξ̄) < L+2ξ̄. Since ξ̄ < ε/2, this means that L− ε < fNk
(ak, ξ̄) <

L+ ε. By choosing N sufficiently large, we can ensure that his holds for all k from 1 to M ,
and therefore L− ε < fN(a, ξ) < L+ ε, as required.
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