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The locker problem appears frequently in both the secondary and university
curriculum [2, 3]. In November 2005, it appeared on National Public Radio’s
Car Talk as a “Puzzler”, and so attained even wider circulation [1]. The problem
goes like this: A school corridor is lined with 1000 lockers, all closed. There are
1000 students who are sent down the hall in turn according to the following rules.
The first student opens every locker. The second student closes every second
locker, beginning with the second. The third student changes the state of every
third locker, beginning with the third, closing it if it is open and opening it if
it is shut. This continues, with the nth student changing the state of every nth
locker, until all the students have walked the hallway. The problem is: Which
lockers remain open after all the students have marched?

The answer is well known: The lockers whose numbers are perfect squares
remain open, as only the squares have an odd number of divisors [4]. We note
that this is true whether the corridor contains 1000 or any other number of
lockers.

In this note we present some simple techniques for dealing with an extension
of this problem. At the outset we wish to extend our thanks to Joe Buhler for
lending his attention and sharing his insights.

If we agree that the students are numbered, and that when sent marching, stu-
dent n will change the state of every nth locker beginning with locker n, then
it is known that we can leave any collection of lockers open by dispatching pre-
cisely the right subset of students [4]. This leads to some interesting problems.
For instance, we know that sending all the students leaves the square lockers
open. Which subset of students must be sent to leave precisely the cube lockers
open? How about the fourth powers? We’ll show shortly that there is a simple
solution to these questions. In the meantime, we state in full generality the
extended locker problem: Given a subset of the lockers, which students should
be dispatched to keep those lockers open? Conversely, given a subset of the
students, which lockers will be left open after they march?

We note that there are several problems interspersed throughout the remainder
of this discourse. The impatient reader may wish to attempt these without
reading the more general results that fill the space between them. While success
is certainly possible, the general results provide a means for tackling most of



the specific questions with greater efficiency.

Problem 1. Show that there can be no two distinct sets of students who will
leave open the same set of lockers. Hint: Given two sets of students, consider
the locker whose number is the smallest where the sets differ.

Returning to our main topic, it is shown in [4] that either version of the extended
problem amounts to solving an m X m nonsingular system of linear equations
modulo 2, where m is the total number of lockers in the corridor. While the
system has a unique solution for any subset of the lockers (or any subset of the
students), finding it this way is tedious, to say the least.

For the remainder of this discourse we will assume that both the number of
lockers and the number of students are infinite. The results in Theorems 1
— 3 hold for the case of any finite number m of lockers and students; simply
ignore in any of the sets we discuss any numbers exceeding m. We adhere to
the convention that the set N of natural numbers does not include 0, so that it
corresponds precisely to the complete student and locker sets.

For certain special subsets of the lockers there is a much more elegant way to
approach the problem than by solving a large linear system. Toward this end,
define the signature of a natural number to be the set of all positive exponents
appearing in that number’s prime factorization. For our purposes it will be
convenient to write members of the signature of a number in ascending order.
For example, 12 = 223! and has signature {1,2}; 15 = 3'5! and has signature
{1}. Note that the signature of 1 is the empty set, 0.

It is evident that the squarefree numbers are precisely the numbers whose signa-
ture is contained in the set {1}. The squares are those numbers whose signature
is contained in the set {2,4,6, ...}, and the cubes are those numbers whose sig-
nature is contained in the set {3,6,9,...}. In general, given a subset A of the
natural numbers, we let o(A) denote the set of all numbers whose signature is
contained in A. With this notation, we have that the set of squarefree numbers
is 0({1}), the set of squares is 0({2,4, 6, ...}), the set of cubes is 0({3,6,9,...}),
and so on. Of course many sets of numbers are not ¢ of anything. For example,
the powers of 2 (or of any specific prime) are not of the form o(A) for any A.

But suppose the set of students is of the form o(A) for some subset A of the
natural numbers. Is there an elegant way to characterize the set of lockers
that will be left open by these students? Indeed there is. We need one more
definition in order to state the result. Given a set A of natural numbers, let
e(A) be all natural numbers that are greater than or equal to an even number
(including 0) of the elements of A. For example, if A = {3,6,9,...}, then
e(4)={1,2,6,7,8,12,13,14,18,19,20,...} ={n e N : n=0,1,2 (mod 6)}.

Theorem 1. Let A C N. If students o(A) are dispatched then lockers o(e(4))
remain open.

Proof. Locker m will remain open if and only if an odd number of students



touch it; that is, if m has an odd number of divisors among the numbers in the
student set. Suppose that the students o(A) are sent marching, and suppose
that locker m has prime factorization m = pi"' p5? - - - pp*. Note that the divisors
of pf" in o(A) are all numbers of the form p], where v € A and 1 < v < o,
together with the number 1 = pY (as 1 € o(A) for all sets A). Now m € o(e(A))
if and only if each «; € e(A), that is, if each «; is greater than or equal to 2a;
members of A, for some a; > 0. If this is the case, then the number of divisors
of m among the students who will march is (2a; + 1) (2a2 + 1) - -+ (2a,, + 1), an
odd number. Hence locker m remains open. To complete the proof, suppose
that some «; ¢ e(A), say «; is greater than or equal to 2a; — 1 members of A.
Then the number of divisors of m among the students who will march contains
the factor 2a; — 1 + 1 = 2a,;, making it even. So locker m will be closed.
O

We note that the proof of this result is a straightforward generalization of
the standard formal proof of the solution to the original locker problem (see,
e.g., [4]). This result makes easy work of several interesting problems (among
them the original).

Problem 2. If all the students are sent down the hall, which lockers remain
open?

Problem 3. If the squares are sent down the hall, which lockers remain open?

Problem 4. If the nth powers are sent down the hall, which lockers remain
open?

Problem 5. If one wishes to keep only locker number 1 open, which students
should be sent marching?

The last problem leads to a natural question: Is there an inverse operation to
the e function? It is not difficult to see that there is. For a subset A of the
natural numbers, let A+ 1 be the set {1} U{n+1 : n € A}, and define f(A)
to be the symmetric difference of A and A + 1, that is, members of the union
AU (A+1) that are not common to both.

Problem 6. Show that e and f are inverse operations. That is, show that
e(f(A)) = f(e(A)) = A for any set A of natural numbers.

Problem 6 together with Theorem 1 establish the following (which makes Prob-
lem 5 a snap):

Theorem 2. Let A C N. If lockers o(A) are to remain open, students o(f(4))
must be dispatched.

Corollary. The set of marching students is in the image of o if and only if the
set of lockers left open is in the image of o.

Theorem 2 makes light work of these problems:



Problem 7. If one wishes to keep only the cube lockers open, which students
should be sent marching?

Problem 8. If one wishes to keep only the nth powers open, which students
should be sent marching?

We see now that the extended locker problem is easily solved for any student or
locker set that is determined completely by a signature-containing set A; that
is, for sets of students or lockers of the form o(A) for some A. However, this is
absolutely no help in cases where the student or locker set is not of this form.
A different technique can often be brought to bear for such cases.

Problems 5 and 8 provide us with a necessary insight. Note that the answer to
Problem 5 can be stated: To keep open only locker number 1, send only the
squarefree students. Likewise, the answer to Problem 8 can be stated: To keep
open only the lockers that are nth powers, send all students whose number is the
product of a squarefree number with an nth power. The squarefree numbers
clearly play a crucial role. We let S denote the set of squarefree numbers;
S =11,2,3,5,6,7,10,11,13,14,...}. And for any natural number m, we let
mS ={ms : seS}.

Problem 9. If one wishes to keep only locker m open, show that one should
dispatch students mS. Hint: See Problem 5.

Theorem 3. Let L C N be the collection of lockers to be kept open. Then
student n should be included in the set of marching students if and only if
n € 1S for an odd number of members [ € L.

Proof. Let L = {ly,ls,...} with [y < lo < ---. Note that L may be finite
or infinite. One way to keep exactly the lockers in L open is as follows: first
send students [1.S. After they have marched only locker I is open. Then send
students [5S. Note that none of the students in /5.5 will touch any of the first
lo — 1 lockers. Since Iy < [o, after this second cadre of students has marched,
only lockers I; and [ will be open. If one were to continue in the fashion,
precisely the lockers in L would be open. Now let n € N. Then n € 1S for only
finitely many [ € L. Suppose n is an element of precisely k of the sets 1S, for
l € L. If k is even, then in the above scenario student n will have marched an
even number of times. This has the same effect as student n not marching at
all. If k is odd, then student n will have marched an odd number of times, and
this has the same effect as student n marching just once. (|

As several people pointed out to us, one can formulate Theorem 3 quite naturally
in terms of Mobius inversion. But we have chosen here to present a totally
elementary approach. With Theorem 3 in hand, several other cases of the
extended locker problem are within reach.

Problem 10. Let p be prime. If one wishes to keep open only those lockers
whose numbers are powers of p, which students must be dispatched? Try this
both with 1 = p° included in the locker set, and with it not included.



Problem 11. Which students must be dispatched to keep only the prime lockers
open?

As a final observation, we note that there can be no nonempty subset A of the
students that keeps precisely the lockers A open when the hallway is infinite.

Theorem 4. Let A C N be any nonempty subset of students. Then the set of
lockers left open by these students is not A.

Proof. Let A = {ny,ns,...} with n; < ng < ---. Consider locker 2n;. The
only proper divisor of 2n; in A is ny. If 2n; € A and the students in A march,
then only students n; and 2n; will touch locker 2n,, and so it will be closed.
Conversely, if 2n; ¢ A, then only student n; will touch locker 2nq, and so it

will remain open. In either case, the student set does not match the locker set.
d

Problem 12. The above proof fails in a corridor with a finite number of lockers.
Show that there is a set A in any finite corridor where students A will leave
open lockers A. If there are more than two lockers in the hallway, there will be
many such sets.

We leave the reader with one final problem. For any subset A of the natural
numbers, denote by A? the set {n2 ' n € A}.

Problem 13. The solution to the original locker problem shows there is a set A
with the property that when students A march, lockers A? remain open (just
take A = N). Find a nonempty set A so that when students A2 march, lockers
A remain open.
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