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Why „?

Why does ‰ play such a central role in the distribution of prime numbers? Simply citing the Prime Number 
Theorem (PNT), which asserts that pHxL ~ x ê ln x, is not very illuminating. Here "~" means "is asymptotic 
to" and pHxL is the number of primes less than or equal to x. So why do natural logs appear, as opposed to 
another flavor of logarithm?

The problem with an attempt at a heuristic explanation is that the sieve of Eratosthenes does not behave as 
one might guess from pure probabilistic considerations. One might think that sieving out the composites 
under x using primes up to è!!!x  would lead to x Pp<è!!!x J1 - 1ÅÅÅÅÅ

p
N as an asymptotic estimate of the count of 

numbers remaining (the primes up to x; p always represents a prime). But this quantity turns out to be not 
asymptotic to x ê ln x. For F. Mertens proved in 1874 that the product is actually asymptotic to 2 ‰-g ê ln x, or 
about 1.12 ê ln x. Thus the sieve is 11% (from 1 ê 1.12) more efficient at eliminating composites than one 
might expect. Commenting on this phenomenon, which one might call the Mertens Paradox, Hardy and 
Wright [5, p. 372] said: "Considerations of this kind explain why the usual 'probability' arguments lead to 
the wrong asymptotic value for pHxL." For more on this theorem of Mertens and related results in prime 
counting see [3; 5; 6, exer. 8.27; 8].

Yet there ought to be a way to explain, using only elementary methods, why natural logarithms play a 
central role in the distribution of primes. A good starting place is two old theorems of Chebyshev (1849).

Chebyshev's First Theorem.  For any x ¥ 2, 0.92 x ê ln x < pHxL < 1.7 x ê ln x.

Chebyshev's Second Theorem.  If pHxL ~ x ê logc x, then c = ‰.

A complete proof of Chebyshev's First Theorem (with slightly weaker constants) is not difficult and the 
reader is encouraged to read the beautiful article by Don Zagier [9] — the very first article ever published in 
this journal (see also [1, §4.1]). The first theorem tells us that x ê logc  x is a reasonable rough approximation 
to the growth of pHxL, but it does not distinguish ‰ from other bases.
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this journal (see also [1, §4.1]). The first theorem tells us that x ê logc  x is a reasonable rough approximation 
to the growth of pHxL, but it does not distinguish ‰ from other bases.

The second theorem can be given a complete proof using only elementary calculus [8]. The result is cer-
tainly a partial heuristic for the centrality of ‰ since it shows that, if any logarithm works, then the base must 
be ‰. Further, one can see the exact place in the proof where ‰ arises ( Ÿ 1 ê x „ x = ln x). But the hypothesis 
for the second theorem is a strong one; here we will show, by a relatively simple proof, that the same conclu-
sion follows from a much weaker hypothesis. Of course, the PNT eliminates the need for any hypothesis at 
all, but its proof requires either an understanding of complex analysis or the willingness to read the sophisti-
cated "elementary proof". The first such was found by Erdos and Selberg; a modern approach appears in [7].

Our presentation here was inspired by a discussion in Courant and Robbins [2]. We show how their heuris-
tic approach can be transformed into a proof of a strong result. So even though our original goal was just to 
motivate the PNT, we end up with a proved theorem that has a simple statement and quite a simple proof.

Theorem.  If x êpHxL is asymptotic to an increasing function, then pHxL~ x ê ln x.

Figure 1 shows that x êpHxL is assuredly not increasing. Yet it does appear to be asymptotic to the piecewise 
linear function that is the upper part of the convex hull of the graph. Indeed, if we take the convex hull of 
the full infinite graph, then the piecewise linear function LHxL corresponding to the part of the hull above the 
graph is increasing (see last section). If one could prove that x êpHxL ~ LHxL then, by the theorem, the PNT 
would follow. In fact, using PNT it is not too hard to prove that LHxL is indeed asymptotic to x êpHxL (such 
proof is given at the end of this paper). In any case, the hypothesis of the theorem is certainly believable, if 
not so easy to prove, and so the theorem serves as a heuristic explanation of the PNT.
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Figure 1.  A graph of x êpHxL shows that the function is not purely increasing. The upper convex hull of the 
graph is an increasing piecewise linear function that is a good approximation to x êpHxL.
Nowadays we can look quite far into the prime realm. Zagier's article of 26 years ago was called The First 
Fifty Million Prime Numbers. Now we can look at the first 700 quintillion prime numbers. Not one at a 
time, perhaps, but the exact value of pH10iL is now known for i up to 22; the most recent value is due to 
Gourdon and Sabeh [4] and is pH4 ÿ 1022 L = 783 964 159 847 056 303 858. Figure 2 is a log-log plot that 
shows the error when these stratospheric p values are compared to x ê ln x and also the much better logarith-
mic integral estimate liHxL (which is Ÿ0

x1 ê ln t „ t).
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Figure 2.  The large dots are the absolute value of the error when x ê ln x is used to approximate pHxL, for 
x = 10i . The smaller dots use liHxL as the approximant.

Two Lemmas

The proof requires two lemmas. The first is a consequence of Chebyshev's First Theorem, but can be given 
a short and elementary proof; it states that almost all numbers are composite.

Lemma 1.  limxØ¶ pHxL ê x = 0.

Proof.  First use an idea of Chebyshev to get pH2 nL - pHnL < 2 n ê ln n for integers n. Take log-base-n of both 
sides of the following to get the needed inequality.

    4n = H1 + 1L2 n > I 2 n
n M ¥ ¤

n<p§2 n
p > ¤

n<p§2 n
n = npH2 nL-pHnL

This means that pH2 nL - pHnL § Hln 4L n ê ln n. Suppose n is a power of 2, say 2k ; then summing over 
2 § k § K, where K is chosen so that 2K § n < 2K+1 , gives

      pHnL § 2 + ‚
k=2
K 2k  ln 4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k

Here each term in the sum is at most 3 ê 4 of the next term, so the entire sum is at most 4 times the last term. 
That is, pHnL § c n ê ln n, which implies pHnL ê n Ø 0. For any x > 0, we take n to be the first power of 2 past 
x, and then pHxL ê x § 2 pHnL ê n, concluding the proof.

By keeping careful track of the constants, the preceding proof can be used to show that pHxL § 8.2 x ê ln x, 
yielding one half of Chebyshev's first theorem, albeit with a weaker constant.

The second lemma is a type of Tauberian result, and the proof goes just slightly beyond elementary calcu-
lus. This lemma is where natural logs come up, well, naturally. For consider the hypothesis with logc  in 
place of ln. Then the constant ln c will cancel, so the conclusion will be unchanged!

Lemma 2.  If WHxL is decreasing and Ÿ2
x WHtL lnH tL ê t „ t ~ ln x , then WHxL ~ 1 ê ln x. 

Proof.  Let e be small and positive; let f HtL = lnHtL ê t. The hypothesis implies Ÿx
x1+e

WHtL f HtL „ t ~ e ln x (to 
see this split the integral into two: from 2 to x and x to x1+e). Since WHxL is decreasing, 
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e ln x ~ Ÿx
x1+e

WHtL f HtL „ t § WHxL Ÿx
x1+e ln tÅÅÅÅÅÅÅÅ

t
„ t = e I1 + eÅÅÅÅ

2
M WHxL Hln xL2

Thus lim infxØ¶  WHxL ln x ¥ 1 ë I1 + eÅÅÅÅ
2
M. A similar argument starting with Ÿx1-e

x WHtL f HtL „ t ~ e ln x shows 
that limsupxØ¶ WHxL ln x § 1 ë I1 - eÅÅÅÅ

2
M. Since e can be arbitrarily small, we have WHxL ln x ~ 1. 

Proof of the Theorem

Theorem.  If x êpHxL is asymptotic to an increasing function, then pHxL~ x ê ln x.

Proof.  Let LHxL be the hypothesized increasing function and let WHxL = 1 ê LHxL, a decreasing function. It 
suffices to show that the hypothesis of Lemma 2 holds, for then LHxL ~ ln x. Let f HtL = lnH tL ê t. Note that if 
ln x ~ gHxL + hHxL where hHxL ê ln x Ø 0, then ln x ~ gHxL; we will use this several times in the following 
sequence, which reaches the desired conclusion by a chain of 11 relations. The notation pk »» n in the third 
expression means that k is the largest power of p that divides n; the equality that follows the || sum comes 
from considering each pm  for 1 § m § k.

ln x ~ 1ÅÅÅÅ
x

 ⁄
n§x

ln n Hcan be done by machine; note 1L
= 1ÅÅÅÅ

x
 ⁄
n§x

⁄
pk »» n

k ln p = 1ÅÅÅÅ
x

 ⁄
n§x

⁄
pm » n, m¥1

ln p

= 1ÅÅÅÅ
x

 ‚
pm §x, 1§m

ln p f xÅÅÅÅÅÅÅÅÅ
pm v ~ 1ÅÅÅÅ

x
 ‚
pm §x, 1§m

ln p xÅÅÅÅÅÅÅÅÅ
pm Herror is small; note 2L

~ ⁄
p§x

f HpL + ‚
pm §x, 2§m

ln pÅÅÅÅÅÅÅÅÅÅÅ
pm ~ ⁄

p§x
f HpL Hgeometric series estimation; note 3L

= pHdxtL f HxL - Ÿ2
x pHtL f £HtL „ t Hpartial summation; note 4L

~ -Ÿ2
x pHtL f £ HtL „ t Hbecause pHdxtL f HxL ê ln x § pHxL ê x Ø 0 by Lemma 1L

~ -Ÿ2
x t WHtL I 1ÅÅÅÅÅÅ

t2
- ln tÅÅÅÅÅÅÅÅ

t2
M „ t Hbecause pHtL ~ t WHtLL

~ Ÿ2
x  WHtL ln tÅÅÅÅÅÅÅÅ

t
 „ t Hl ' Hôpital, note 5L

 

Notes:

1. It is easy to verify this relation using standard integral test ideas: start with the fact that the sum lies 
between Ÿ1

x ln t „ t  and x ln x. But it is intriguing to see that Mathematica can resolve this using symbolic 
algebra. The sum is just lnHdxt !L and Mathematica quickly returns 1 when asked for the limit of x ln x ê lnHx !L 
as x Ø ¶.

2. error ê ln x § 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
x ln x

 ⁄pm §x ln p § 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
x ln x

 ‚
p§x

logp  x ln p =

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
x ln x

 ⁄p§x ln x = pHxL ê x Ø 0 by Lemma 1

3. The second sum divided by ln x approaches 0 because:

    ‚
pm §x, 2§m

ln pÅÅÅÅÅÅÅÅÅÅ
pm § ‚

p§x
ln p ‚

m=2
¶ 1ÅÅÅÅÅÅÅÅÅ

pm = ‚
p§x

ln pÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pHp-1L § ‚

n=2
¶ ln nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

nHn-1L

§ ‚
n=2
¶ Hn-1L1ê2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn-1L2 < ¶

4. We use partial summation, a technique common in analytic number theory. Write the integral from 2 to x 
as a sum of integrals over @n, n + 1D together with one from dxt to x and use the fact that pHtL is constant on 
such intervals and jumps by 1 exactly at the primes. More precisely: 
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as a sum of integrals over @n, n + 1D together with one from dxt to x and use the fact that pHtL is constant on 
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    Ÿ2
x p HtL f £  HtL „ t = Ÿdxtx p HtL f £  HtL „ t + ⁄n=2

dxt-1 Ÿn
n+1 p HtL f £  HtL „ t

= p HdxtL H f  HxL - f  HdxtL L + ⁄n=2
dxt-1 p HnL H f  Hn + 1L - f  HnL L = p HdxtL f  HxL - ⁄p§x f  HpL

5.  L'Hôpital's rule on 1ÅÅÅÅÅÅÅÅÅ
ln x

 Ÿ2
x t WHtL 1ÅÅÅÅÅÅ

t2
 „ t yields W HxLêxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1êx = WHxL = 1 êLHxL, which approaches 0 by Lemma 1.

No line in the proof uses anything beyond elementary calculus except the call to Lemma 2. The result shows 
that if there is any nice function that characterizes the growth of pHxL then that function must be asymptotic 
to x ê ln x. Of course, the PNT shows that this function does indeed do the job.

This proof works with no change if base-c logarithms are used throughout. But as noted, Lemma 2 will 
force the natural log to appear! The reason for this lies in the indefinite integration that takes places in the 
lemma's proof.

Conclusion

Might there be a chance of proving in a simple way that x êpHxL is asymptotic to an increasing function, thus 
getting another proof of PNT? This is probably wishful thinking. However, there is a natural candidate for 
the increasing function. Let LHxL be the upper convex hull of the full graph of x êpHxL (precise definition to 
follow). The piecewise linear function LHxL is increasing because x êpHxL Ø ¶ as x Ø ¶. Moreover, using 
PNT, we can give a proof that LHxL is indeed asymptotic to x êpHxL. But the point of our work in this paper is 
that for someone who wishes to understand why the growth of primes is governed by natural logarithms, a 
reasonable approach is to convince oneself via computation that the convex hull just mentioned satisfies the 
hypothesis of our theorem, and then use the relatively simple proof to show that this hypothesis rigorously 
implies the prime number theorem.

We conclude with the convex hull definition and proof. Let B be the graph of x êpHxL: the set of all points 
Hx, x êpHxLL where x ¥ 2. Let C be the convex hull of B: the intersection of all convex sets containing B. The 
line segment from H2, 2L  to any Hx, x êpHxLL lies in C. As x Ø ¶, the slope of this line segment tends to 0 
(because pHxL Ø ¶). Hence for any positive a and e, the vertical line x = a contains points in C of the form 
Ha, 2 + eL. Thus the intersection of the line x = a with C is a set of points Ha, yL where 2 < y § LHxL. The 
function LHxL is piecewise linear and x êpHxL § LHxL for all x. This function is what we call the upper convex 
hull of x êpHxL.
Theorem.  The upper convex hull of x êpHxL is asymptotic to pHxL.
Proof.  For given positive e and x0, define a convex set AHx0L whose boundary consists of the positive 
x-axis, the line segment from H0, 0L to H0, H1 + eL Hln x0LL, the line segment from that point to 
H‰ x0, H1 + eL H1 + ln x0LL, and finally the curve Hx, H1 + eL ln xL for ‰ x0 § x. The slopes match at ‰ x0, so this 
is indeed convex. The PNT implies that for any e > 0 there is an x1such that, beyond x1, 
H1 - eL ln x < x êpHxL < H1 + eL ln x. Now choose x0 > x1so that pHx1L < H1 + eL ln x0. It follows that AHx0L 
contains B: beyond x0 this is because x0 > x1; below x1 the straight part is high enough at x = 0 and only 
increases; and between x1 and x0 this is because the curved part is convex down and so the straight part is 
above where the curved part would be, and that dominates pHxL by the choice of x1. This means that the 
convex hull of the graph of x êpHxL is contained in AHx0L, because AHx0L is convex. That is, LHxL § H1 + eL ln x 
for x ¥ x0. Indeed, H1 - eL ln x § x êpHxL § LHxL § H1 + eL ln x for all sufficiently large x. Hence 
x êpHxL ~ LHxL.
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