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2	I am thankful to Stan Wagon, Roberto Tauraso, Anders Eriksson, Felix Lundberg (particularly with respect to 
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ENTRY 1: Leaning sticks problem 
 
   The following problem proposal rightfully struck a reviewer as an example of a solution in 
search of a problem. 
 
Problem 1.1: For a positive integer 𝑛, let 𝑏#, … , 𝑏& be real numbers from 0,1 , let 𝑎* = 1 and 
set 𝑎, = 𝑎,-# 1 − 𝑎,-#/ 𝑏,/ − 𝑏, 1 − 𝑎,-#/  for 1 ≤ 𝑘 ≤ 𝑛. Find the minimum real number, 
𝜀, assuring that 𝑎,𝑏,&

,3# < 𝜀 regardless the value of 𝑛. 
 
Solution: The answer is 𝜀 = 𝜋/2. View 𝑎, and 𝑏, respectively as height and base in triangle 
𝑇, constructed as follows. Make 𝑛 dots, 𝑝#, … , 𝑝&, on the positive 𝑥-axis (𝑦 = 0), the first at 
𝑥 = 𝑏#, the second at 𝑥 = 𝑏# + 𝑏/ and so on. From point 𝑝# draw a line 𝑙# of unit length so that 
its other end goes to 𝑥 = 0, 𝑦 = 𝑎# = 1 − 𝑏#/ . Then, for 𝑘 = 2,… , 𝑛 from 𝑝, draw the line 
𝑙, of unit length so that its other end touches the line 𝑙,-#. The 𝑛 lines form together with the 
axes of the coordinate system 𝑛 triangular regions with individual areas 𝐴,.   That 𝑎, relate to 
𝑎,-# and 𝑏, via the recursion formula in the problem statement can be worked out by trivial 
geometry and algebra (draw a figure!). The triangle  𝑇, consists of one line with length 1, one 
line with length 𝑏, and one line with length 𝑢,. Let 𝜃C be the angle opposite to the side of 
length 𝑏,.  The value of 𝜀 is two times the minimum area non-reachable by the sum of the 
triangle areas 𝐴,. From the geometric construction can be realized that 𝜃,&

,3# < D
/
 and since 

sin 𝜃, < 𝜃, for 0 < 𝜃, follows that 
 

𝐴,

&

,3#

=
1
2 𝑎,𝑏,

&

,3#

=
1
2 𝑢, sin 𝜃,

&

,3#

<
1
2 𝑢,𝜃,

&

,3#

<
1
2 𝜃, <

𝜋
4

&

,3#

 

 
Nothing hinders to consider a very large 𝑛 and “select” 𝑢,:s arbitrarily close to 1 and so it is 
not possible to reduce 𝜀 further. 
   While working with a modified version of the problem I encountered an obstacle leading to 
the following conjecture. 
 
Conjecture 1.1: If for any positive real number 𝑐 smaller than the positive integer 𝑛 we define 
 

𝑓K 𝑛 = 1 − 1 −
𝑐
𝑛

/&
+
𝑐
𝑛 1 − 1 −

𝑐
𝑛

/,
&-#

,3#

, 

 
then 𝑓K 𝑛 < 𝑓K 𝑛 + 1 < cosh-# 𝑒K. 
	
ENTRY 2: An inequality involving the arithmetic-geometric mean 
	
   The arithmetic-geometric mean of the non-negative numbers 𝑥 and 𝑦 is denoted AGM(𝑥, 𝑦)  
and defined as the limiting value of each of the intertwined sequences 𝑎, = (𝑎,-# + 𝑏,-#)/2 
and 𝑏, = 𝑎,-#𝑏,-# with 𝑎* = 𝑥 and 𝑏* = 𝑦. The following conjecture seems hard to prove 
(or disprove). I gave up trying already after an hour. 
 
Conjecture 2.1: For real numbers 𝑎, 𝑏, 𝑐 with 0 < 𝑎 < 𝑏 and AGM 𝑎, 𝑏 = 𝑐 is conjectured 
that AGM AGM 𝑎, 𝑐 , AGM 𝑏, 𝑐 > 𝑐. 
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Remark 2.1: If AGM is replaced by the arithmetic-harmonic mean (which is the same as simple 
geometric mean) or any regular Pythagorean mean then should > 𝑐 be replaced by = 𝑐. These 
equalities are fairly straightforward to prove. If instead AGM is replaced by the geometric-
harmonic mean, then should (again conjectured) > 𝑐 be replaced by < 𝑐. 
 
ENTRY 3: A modified version of Langton’s ant and the sum of even squares 

 
   Consider an ant (Langton’s ant) placed in a square grid with initially only white cells. The ant 
is initially facing right. The ant notices the color of the cell, turns 90° right/left if the cell color 
is white/black, recolors the cell to black/white and moves forward by one step. The pattern is 
repeated. Famously the journey of the ant (and the evolution of the landscape) looks chaotic to 
begin with while after roundabout 10,000 steps a recurring pattern emerges with the ant (for 
each period of the pattern) moving further and further away from the starting cell. Many variants 
of Langton’s ant have been looked at but the following result seems not to have attracted 
attention.  
	
Conjecture 3.1: A flea follows the same rules as Langton’s ant but with one exception; the flea 
jumps forward by 2 units instead of 1 whenever having recolored a cell from black to white. It 
is conjectured that the flea returns to the starting cell for the 𝑚:th time following a number of 
jumps corresponding to the sum of the 𝑚 first even squares. 
 
Remark 3.1: The conjectured result can be generalized as to concern any flea that jumps 𝑎 or 𝑏 
units forward depending on the type of recoloring. As long as 𝑎 ≠ 𝑏 are positive integers the 
flea returns to the starting cell for the 𝑚:th time following a number of jumps corresponding to 
the sum of the 𝑚 first even squares.  
 
Remark 3.2: The flea follows a peculiar and repetitive pattern. Based on this I have outlined a 
proof of the conjecture but it is tedious and unlikely to meet the criteria for being classified as 
stringent. 
 
ENTRY 4: Sum of lengths of sequences within a set of sequences 
 
   Despite repeated failures the conjecture that follows has been entertaining trying to prove. 
 
Definition 4.1: A vector (or finite sequence) belongs to 𝑉X,& if it consists of 𝑛 elements such 
that each element belongs to 1,2, … ,𝑚 . 
 
Example: The vector [1 4 2 1 3] can be said to belong to 𝑉Y,Z. It also belongs to e.g., 𝑉#Y,Z. 
 
Definition 4.2: For a vector (or finite sequence), 𝑣, we let 𝑓(𝑣) denote the number of 1:s in the 
longest sequence of consecutive 1:s when the elements of 𝑣 are placed clockwise in a circle. A 
given element equal to 1 can at most be counted once and so 𝑓(𝑣) cannot exceed the number 
of elements within 𝑣. 
 
Examples: With 𝑣# = [1	4	2	1	3], 𝑣/ = [1	1	2	1	3]  and 𝑣` = [1	1	2	1	1] we get 𝑓 𝑣# = 1, 
𝑓 𝑣/ = 2 and 𝑓 𝑣` = 4.  
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Definition 4.3: For positive integers 𝑚 and 𝑛 we define 𝑊X,& as  
 

𝑊X,& = 𝑓(𝑣)
b∈de,f

 

 
Conjecture 4.1: For any prime number 𝑝 is 𝑊X,g a multiple of 𝑚𝑝. 
	
Examples: The only 𝑣 of 𝑉#,` is [1 1 1] and 𝑓 𝑣 = 3 which is a multiple of 𝑚𝑝 given that we 
have 𝑚 = 1 and 𝑝 = 3. The eight 𝑣:s of 𝑉/,` are [1 1 1], [1 1 2], [1 2 1], [1 2 2], [2 1 1], [2 1 2], 
[2 2 1] and [2 2 2] and the corresponding 𝑓(𝑣):s are 3, 2, 2, 1, 2, 1, 1 and 0 which sum to 𝑊/,` =
12 which is a multiple of 𝑚𝑝 = 6 . In the case of 𝑉/,Y we get that 𝑊/,Y = 30 (see for your self!). 
This is not a multiple of 8, but 4 is not a prime number, so it does not conflict with the 
conjecture. 
 
ENTRY 5: A generalization of a sequence of Leibniz plus a mysterious constant 
 
   The following results were found in the spirit of experimental mathematics. They were in part 
presented as by-findings in an article (E. Vigren & A. Dieckmann, 2020, Symmetry, 12, 1040) 
focusing on electric fields in certain line charge configurations. The results are repeated here 
for further visibility.  
 
Conjecture 5.1: It is known (an unusual way to present Leibniz’ sequence for 𝜋) that 
 

1
𝜋 −1 , 1/2 − 𝑘

1/2 − 𝑘 /			

i

,3-i

= 1 = 𝐺* 

and it is conjectured that 
1
𝜋 −1 ,kX 1/2 − 𝑘

1/2 − 𝑘 / + 𝑚/			

i

,,X3-i

= 𝐺 = 𝐺# 

1
𝜋 −1 ,kXk&kl 1/2 − 𝑘

1/2 − 𝑘 / + 𝑚/ + 𝑛/ + 𝑡/			

i

,,X,&,l3-i

= 𝐺/ 

 
where 𝐺 is Gauss’s constant (𝐺 = 1/AGM 1, 2 ). 
 
Remark 5.1: Despite extensive detective work I have not been able to find a closed-form 
expression for the “point charge constant” 
 

−1 ,kXk& 1/2 − 𝑘
1/2 − 𝑘 / + 𝑚/ + 𝑛/ `//		

i

,,X,&3-i

≈ 6.19918073…, 

 
but noticed that if replacing −1 ,kXk& by 1 in the triple sum renders the result 2𝜋/3. 
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ENTRY 6: A multifactorial problem 
 
   This is an example of a constructed problem. Note that the number of exclamation marks in 
a multifactorial expression tells the separation between numbers to be multiplied. For instance, 
we have that 33‼‼! = 33×28×23×18×13×8×3 = 119351232.    
 
Problem 6.1: Evaluate 
 

𝑘w − 𝑘` − 15𝑘/ − 75𝑘 − 125
𝑘‼‼! Y

i

,3*

 

 
Solution: Note that 𝑘‼‼! = 𝑘 for 1 ≤ 𝑘 ≤ 4 so that 
 

𝑘w

𝑘‼‼! Y

i

,3*

=
𝑘Yk`

𝑘‼‼! Y

i

,3*

= 𝑘`
Y

,3#

+
𝑘`

(𝑘 − 5)‼‼! Y

i

,3Z

= 100 +
(𝑘 + 5)`

𝑘‼‼! Y

i

,3*

 

 

= 100 +
`
* 5

`𝑘* + `
# 5

/𝑘# + `
/ 5

#𝑘/ + `
` 5

*𝑘`

𝑘‼‼! Y

i

,3*

= 100 +
125 + 75𝑘 + 15𝑘/ + 𝑘`

𝑘‼‼! Y

i

,3*

 

 
which shows that the sum in the problem statement equals 100. 
 
ENTRY 7: Evaluation of a class of alternating series 
 
   The following (possibly known) result was spotted while contemplating certain lattice sums, 
but I omit describing the connection here. The idea is presented in some further detail online3. 
 
Definition 7.1: For nonnegative integers 𝑛, define  𝑆& = −1 ,𝑘&i

,3* . 
 
Remark 7.1: It is known (from Abel regularization) that 𝑆* =

#
/
, 𝑆# = − #

Y
, 𝑆/ = 0, 𝑆` =

#
y
,…  

 
Conjecture 7.1: For positive integers 𝑚 ≥ 1 holds true that 
	

−1 ,

𝑘 + 1 (𝑘 + 𝑠)
X

|3#

i

,3*

= 𝑚 − 1 !
2X − 1
2X  

 
Remark 7.2: Conjecture 7.1 allows to calculate  𝑆& recursively. 
 
Exercise: Show that Conjecture 7.1 is consistent with 𝑆` = 1/8.  
 
Remark 7.3: An induction proof of Conjecture 7.1 would be straightforward to complete should 
it be (maybe it is!?) well established that for 𝑚 ≥ 1:  
  

−1 , (𝑘 + 𝑠)
X

|3#

i

,3*

=
𝑚!
2Xk# 

																																																								
3	http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html 	
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ENTRY 8: Water transfer problem 
 

   A round table problem follows that includes an open part (b). I realize that the solution to 
part (a) is non-stringent and hence I refer to the solution as sketchy.  
 
Problem 8.1: A liter of water is distributed in some fashion into the initially empty glasses 
𝑔#, 𝑔/, … , 𝑔& which are placed in circle around a table (each glass is big enough to contain a 
liter and there is no spilling in the considered scenario). Transfer 𝑟 ≥ 1 then involves moving 
a fraction of 1/𝑟 of the content in glass 𝑔, into glass 𝑔,k# if 𝑘 ≠ 𝑛 and into glass 𝑔# if 𝑘 = 𝑛 
where 𝑘 is the minimal positive integer that can be expressed as 𝑘 = 𝑟 − 𝑏𝑛 while restricting 
𝑏 to be a nonnegative integer.  
 
(a) Show that the water content in each and every glass approaches 1/𝑛 liter as 𝑟 → ∞. 
 
(b) Given 𝑛 ≥ 3, is it possible that each glass contains exactly 1/𝑛 liter after a positive number 
of moves have been made? 
 
Sketchy solution: (a) Let 𝑣, and 𝑣,k# be the volume of water in glasses 𝑔, and 𝑔,k#, 
respectively, prior to transfer from 𝑔, to 𝑔,k# in move 𝑡 and from 𝑔,k# to the next glass in 
move 𝑡 + 1. Let 𝑣,k#�  be the volume in 𝑔,k# after move 𝑡 + 1. We have that 
 

𝑣,k#� =
𝑣, + 𝑡𝑣,k#
𝑡 + 1  

so if 𝑣, ≥ 𝑣,k# then is 
 

𝑣,k#� ≥
𝑣,k# + 𝑡𝑣,k#

𝑡 + 1 = 𝑣,k# 
 
and if 𝑣, < 𝑣,k# then is 
 

𝑣,k#� <
𝑣,k# + 𝑡𝑣,k#

𝑡 + 1 = 𝑣,k# 
 
This implies an evening out tendency for the water content in the glasses, which can be viewed 
as powered by a flow of water circulating across the glasses. Owing to the divergence of the 
series #

#
+ #

/
+ #

`
+ ⋯ it can be realized that the flow in fact is eternal. From physical intuition is 

then clear that any given water molecule (or entity) in a far distant future (extremely many 
moves ahead) is equally probable to be in any given glass. Part (b) is open, not sure about the 
answer, and no solution is offered here. 
 
Conjecture 8.1 (possibly quite easy to prove): With only two glasses and with transfer of 1/𝑟/ 
instead of 1/𝑟, the fraction of the water content in 𝑔/  to the total water content in 𝑔# + 𝑔/ 
approaches ln 2.  
 
Conjecture 8.2: With only four glasses, starting with 1/4 liter in each of 𝑔#, 𝑔/, 𝑔` and 𝑔Y and 
going for the 1/𝑟/ instead of 1/𝑟 type of transfer,  the fraction of the water content in 𝑔/  to 
the total water content in all four glasses approaches 2 − 𝜋//6. 
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ENTRY 9: A duality problem 
 

   The problem that follows was deemed too simple but the observation was credited as nice. 
 
Definition 9.1: For 0 ≤ 𝑘 ≤ 𝑛, we define 
 

𝑛
𝑘 =

𝑛!
𝑛 − 𝑘 ! 𝑘! = 𝑛! 𝑛 − 𝑘 ! 𝑘!  

 
and 

𝑛
𝑘 = 𝑇& − 𝑇&-, + 𝑇,  

 
where 𝑇� = 0 + 1 + 2 +⋯+ 𝑗.  
 
Remark 9.1: Properties such as symmetry and monotonicity hold for &

,   and one may show 
by induction (left out here) that e.g., 

𝑛
𝑘

&

,3*

=
𝑛(𝑛 − 1)(𝑛 + 1)

6  

𝑛
𝑘

/&

,3*

=
𝑛Z − 𝑛
30  

Problem 9.1: Consider the following well-known identities:  
 
(i) &

, = 𝑛 (𝑛 − 𝑘) &-#
,   (ii) &

X
X
, = &

,
&-,
X-,   

 
where 0 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛. Would the relations hold also if all division and multiplication signs, 
also those not explicitly shown, were to be replaced by minus and plus signs, respectively? 
 
Solution: The answer is yes. The modified form of &

, , is exactly  &
,  as described above and  

𝑛
𝑘 = 𝑇& − 𝑇&-, + 𝑇, = ⋯ = 𝑛 − 𝑘 𝑘 

 
where we have left out some algebraic steps. (i) The relation 
 

𝑛
𝑘 = 𝑛 (𝑛 − 𝑘)

𝑛 − 1
𝑘  

 
becomes in “modified” form 

𝑛
𝑘 = 𝑛 − (𝑛 − 𝑘) +

𝑛 − 1
𝑘 = 𝑘 +

𝑛 − 1
𝑘  

 
This holds because 

𝑛
𝑘 = 𝑛 − 𝑘 𝑘 = 𝑛 − 1 − 𝑘 𝑘 + 𝑘 =

𝑛 − 1
𝑘 + 𝑘 

 
Part (ii) is left as an exercise. 
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ENTRY 10: A mathematical spacing problem 
 

   A short article version of this problem was rejected (many years ago) as the topic of 
mathematical spacing had been extensively studied for a long time. If a reader is aware of 
previous occurrences of this problem (or equivalent versions thereof) I would like to know so 
that I can add references as a remark. 
 
Problem 10.1: Let 𝑛 ≥ 2 be an integer and let 𝑏 < 1 be a positive real number. Select 𝑛 real 
numbers randomly from  (0,1) and then label them so that 𝑥# ≤ 𝑥/ ≤ ⋯ ≤ 𝑥&. Let 𝑃 𝑛, 𝑏  be 
the probability of the event that 𝑥�k# − 𝑥� ≤ 𝑏 for all  𝑗 ∈ 1,2, … , 𝑛 − 1 .  Show that 
 

𝑃 𝑛, 𝑏 = −1 , 𝑛 − 1
𝑘 1 − 𝑘𝑏 &

��� ��� ,&-#

,3*

 

 
Solution: Instead of points distributed on the line from 0 to 1 we shall view the problem as 
concerning points distributed on a line of length 𝐿 and where the separation between 
neighboring points is satisfactory if it does not exceed 𝑏/𝐿. The sought probability is the ratio 
of a volume, 𝑉�(𝑛, 𝑏, 𝐿), of satisfactory configurations and the volume of the 𝑛 −dimenisonal 
cube of side length 𝐿. As the latter volume is 𝐿& our task is then to show that 

 

𝑉� 𝑛, 𝑏, 𝐿 = 𝐿& −1 , 𝑛 − 1
𝑘 1 −

𝑘𝑏
𝐿

&
��� �

� ,&-#

,3*

= 𝜇, 𝐿 − 𝑘𝑏 &

��� �
� ,&-#

,3*

 

 
where we define 𝜇, = −1 , &-#

, . We shall prove the formula through induction and make 
use of 𝜈, = −1 , &-/

,   along with the identities (prove these as an exercise!): (i) 𝜈* = 𝜇*, 
(ii) −𝜈&-/ = 𝜇&-#, (iii) 𝜈, − 𝜈,-# = 𝜇, for 1 ≤ 𝑘 ≤ 𝑛 − 2. 
   We note from calculus that  
 

𝑉� 2, 𝑏, 𝐿 = 2 𝑏𝑑𝑥
�-�

*
+ 𝐿 − 𝑥 𝑑𝑥

�

�-�
= 2𝑏𝐿 − 𝑏/ 

 
which can be seen to agree with the formula (note that in this case with 𝑛 = 2 holds for sure 
true that min �

�
, 𝑛 − 1 = 1) so we are done with the base case 𝑛 = 2. In what follows we 

make the induction hypothesis that the formula applies for 𝑛 − 1. Divide the line into 𝑚 + 1 
connected intervals,  𝐼*, 𝐼#, … , 𝐼X,  where 𝑚 = �

�
. Interval  𝐼* starts at 0 and otherwise interval 

𝐼�  starts at 𝐿 − 𝑚 + 1 − 𝑗 𝑏. The leftmost point, which can be chosen in 𝑛 different ways, 
may be located in any of the 𝑚 + 1 intervals and we shall construct 𝑉� 𝑛, 𝑏, 𝐿  as the sum of 
𝑚 + 1	contributions: 

𝑉� 𝑛, 𝑏, 𝐿 = 𝑉�,� 𝑛, 𝑏, 𝐿
X

�3*

 

where 𝑚 = �
�

 and where the index 𝑗 tells in what interval the leftmost point is located. 
Integrating over starting position we have in general that 
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𝑉�,� 𝑛, 𝑏, 𝐿 = 𝑛 𝑓�(𝑥)𝑑𝑥
��� ��

��� ��
− 𝑔�(𝑥)𝑑𝑥

��� ��

��� ��
 

 
where from the induction hypothesis: 
 

𝑓� 𝑥 = 𝜈,

��� X-�,&-/

,3*

𝐿 − 𝑥 − 𝑘𝑏 &-# 

and 
 

𝑔� 𝑥 = 𝜈,

��� X-�-#,&-/

,3*

𝐿 − 𝑥 − 𝑘 + 1 𝑏 &-# = 𝜈,-#

#k��� X-�-#,&-/

,3#

𝐿 − 𝑥 − 𝑘𝑏 &-# 

 
with 𝜈, = −1 , &-/

, . The subtraction of the integral with integrand 𝑔�(𝑥) is to correct for 
the fact that the integral with integrand 𝑓�(𝑥) may include volumes where the separation 
between the two leftmost points exceeds 𝑏. We get 
 

𝑉�,� 𝑛, 𝑏, 𝐿 = 𝑛 𝜈* 𝐿 − 𝑥 &-#
��� ��

��� ��
𝑑𝑥 + 𝜈, − 𝜈,-#

��� X-�,&-/

,3#

𝐿 − 𝑥 − 𝑘𝑏 &-#𝑑𝑥
��� ��

��� ��
+ 𝛿#  

 
where  
 

𝛿# =
0 if	𝑚 − 𝑗 < 𝑛 − 2	

− 𝜈&-/ 𝐿 − 𝑥 − 𝑛 − 2 𝑏 &-#
��� ��

��� ��
𝑑𝑥 if	𝑚 − 𝑗 ≥ 𝑛 − 2  

 
Index 𝑘 appears in the evaluation of 𝑉�,� 𝑛, 𝑏, 𝐿  if and only if min 𝑚 − 𝑗, 𝑛 − 2 ≥ 𝑘. Since 
the intervals are connected we can for any given 𝑘 merge the relevant integrals and get 
 

𝑉� 𝑛, 𝑏, 𝐿 = 𝑛 𝜈* 𝐿 − 𝑥 &-#
�

*
𝑑𝑥 + 𝑛 𝜈, − 𝜈,-# 𝐿 − 𝑥 − 𝑘𝑏 &-#

�-,�

*
𝑑𝑥

��� X-#,&-/

,3#

+ 𝑛𝛿/ 

 
where 
 

𝛿/ =
0 if	𝑚 − 1 < 𝑛 − 2	

− 𝜈&-/ 𝐿 − 𝑥 − 𝑛 − 2 𝑏 &-#
�- &-/ �

*
𝑑𝑥 if	𝑚 − 1 ≥ 𝑛 − 2  

 
Trivial calculus and incorporation of the aforementioned identities [𝜈* = 𝜇*, −𝜈&-/ = 𝜇&-#, 
𝜈, − 𝜈,-# = 𝜇, for 1 ≤ 𝑘 ≤ 𝑛 − 2 and 𝑚 = 𝐿/𝑏 ] then gives 
 

𝑉� 𝑛, 𝑏, 𝐿 = 𝜇, 𝐿 − 𝑘𝑏 &

��� �/� ,&-#

,3*

 

as desired. 
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ENTRY 11: A problem involving logarithms 
 

   This problem proposal, in which multiple questions are squeezed into single ones, was simply 
not deemed interesting enough.  
 
Problem 11.1: Define 

𝑓(𝑐,𝑚, 𝑛, 𝑢) = logKk#
𝑛 + (𝑐 + 1)�

𝑚 − 𝑢 
 
and accept argument values only from the set of strictly positive integers, ℤk, when treating the 
questions that follow. 
 
(a) In what ways can the four arguments 𝑐, 𝑚, 𝑛 and  𝑢  be split into two groups, 𝐴 and 𝐵, of 
two arguments each, so that no matter what values are set for the arguments in 𝐴 it remains 
possible to assign values to the arguments in 𝐵 so that 𝑓(𝑐,𝑚, 𝑛, 𝑢) ∈ ℤk? 
 
(b) Provided that only three of the equations 𝑐# = 𝑐/,	𝑚# = 𝑚/, 𝑛# = 𝑛/ and 𝑢# = 𝑢/  are true, 
when can it happen that both 𝑓(𝑐#,𝑚#, 𝑛#, 𝑢#) and  𝑓(𝑐/,𝑚/, 𝑛/, 𝑢/) are in ℤk? 
 
Solution: (a) The pairs to which values can be set arbitrarily are limited to 𝑐,𝑚 , (𝑐, 𝑢) and 
𝑚, 𝑢 . For fixed 𝑐 and 𝑚 we may set 𝑛 = 𝑐 + 1 /𝑚 − (𝑐 + 1) and 𝑢 = 1 to get 

 

𝑓(𝑐,𝑚, 𝑐 + 1 /𝑚 − (𝑐 + 1),1) = logKk#
𝑐 + 1 /𝑚 − (𝑐 + 1) + (𝑐 + 1)#

𝑚 − 1 

 
= logKk# 𝑐 + 1 / − 1 = 2 − 1 = 1 ∈ ℤk. 

 
For fixed 𝑐 and 𝑢 we may set 𝑚 = 1 and 𝑛 = 𝑐 + 1 �k# − (𝑐 + 1)� to get 
 

𝑓(𝑐, 1, 𝑐 + 1 �k# − (𝑐 + 1)�, 𝑢) = logKk#
𝑐 + 1 �k# − (𝑐 + 1)� + (𝑐 + 1)�

1 − 𝑢 

 
= logKk# 𝑐 + 1 �k# − 𝑢 = 𝑢 + 1 − 𝑢 = 1 ∈ ℤk. 

 
For fixed 𝑚 and 𝑢 we may set 𝑐 = 1 and  𝑛 = 2�k#𝑚 − 2� to get 
 

𝑓(1,𝑚, 2�k#𝑚 − 2�, 𝑢) = log/
2�k#𝑚 − 2� + 2�

𝑚 − 𝑢 

 
= log/ 2�k# − 𝑢 = 𝑢 + 1 − 𝑢 = 1 ∈ ℤk. 

 
Let us introduce 𝐶 = 𝑐 + 1 ≥ 2  and note that a general requirement for 𝑓(𝑐,𝑚, 𝑛, 𝑢) ∈ ℤkis 
that there exists an integer 𝑠 > 𝑢 such that 
 

𝑛 + 𝐶�

𝑚 = 𝐶| 
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This enforces 𝑛 = 𝑚𝐶| − 𝐶� = 𝐶(𝑚𝐶|-# − 𝐶�-#) where the factor within parentheses surely 
exceeds 1. We see that 𝑛 in general must be a multiple of 𝐶 ≥ 2 in order for there to be a chance 
that 𝑓(𝑐,𝑚, 𝑛, 𝑢) ∈ ℤk. Thus if 𝑛 happens to be arbitrarily selected as equal to a prime number 
there is in fact no way that 𝑓(𝑐,𝑚, 𝑛, 𝑢) ∈ ℤk. 
 
b) It can happen when 𝑚# ≠ 𝑚/ (for instance is 𝑓 1,1,6,1 = 2 and 𝑓 1,2,6,1 = 1 both 
members of ℤk). It can also happen when 𝑛# ≠ 𝑛/ (for instance is 𝑓 1,1,6,1 = 2 and 
𝑓 1,1,14,1 = 3 both members of ℤk). It can also happen when 𝑐# ≠ 𝑐/ (for instance is 
𝑓 1,1,30,1 = 4 and 𝑓 5,1,30,1 = 1  both members of ℤk). Finally, it cannot happen when 
𝑢# ≠ 𝑢/. 
 
Proof that it cannot happen when 𝑢# ≠ 𝑢/: Set again 𝐶 = 𝑐 + 1 ≥ 2. Note that the base 𝐶 
representation of 𝐶  − 𝐶� for positive integers 𝑎 > 𝑏 ≥ 1 contains 𝑎 “digits”, the 𝑏 last being 
zeros and the rest being 𝐶 − 1: s (e.g., nines when working in base 10 and ones when working 
in base 2). Let 𝑚 = 𝑚# = 𝑚/, 𝑛 = 𝑛# = 𝑛/ and 𝑐 = 𝑐# = 𝑐/. Without loss of generality, 
assume that 𝑢# > 𝑢/. For both 𝑓(𝑐,𝑚, 𝑛, 𝑢#) and 𝑓(𝑐,𝑚, 𝑛, 𝑢/) to be in ℤk requires the 
existence of integers 𝑠# > 𝑢# and 𝑠/ > 𝑢/ such that 
 

𝑛 + 𝐶��
𝑚 = 𝐶|�;

𝑛 + 𝐶�¢
𝑚 = 𝐶|¢ 

 
where clearly we must have 𝑠# > 𝑠/ following the assumption that 𝑢# > 𝑢/. If 𝑚 is of the form 
𝑚 = 𝐶, with 𝑘 a non-negative integer we get that  
 

𝑛 = 𝐶|�k, − 𝐶��; 𝑛 = 𝐶|¢k, − 𝐶�¢ 
 
The first equation is saying that 𝑛 has 𝑠# + 𝑘 digits in its base-𝐶 represenation, while the other 
is saying that	𝑛 has 𝑠/ + 𝑘 digits in its base-𝐶 represenation. Since 𝑛 has a unique base-𝐶 
represenation it follows that 𝑠# and 𝑠/ are forced to be equal, contradicting the notion 𝑠# > 𝑠/ 
above. If 𝑚 is such that 𝐶, < 𝑚 < 𝐶,k# for some non-negative integer 𝑘 we get when picturing 
two solutions, with similar settings as above (𝑢# < 𝑠#,	𝑢/ < 𝑠/, 𝑢# > 𝑢/, 𝑠# > 𝑠/): 
 

𝐶,k|� − 𝐶�� < 𝑛 < 𝐶,k#k|� − 𝐶�� 
 

𝐶,k|¢ − 𝐶�¢ < 𝑛 < 𝐶,k#k|¢ − 𝐶�¢ 
 
   The inequalities tell that the number of digits in the base-𝐶 represenation of 𝑛 on the one hand 
is 𝑘 + 𝑠# or 𝑘 + 1 + 𝑠# and on the other hand is 𝑘 + 𝑠/ or 𝑘 + 1 + 𝑠/. With 𝑠# > 𝑠/ we can 
only realize this by setting 𝑠# = 𝑠/ + 1. Using this we are forced to accept 
 

𝐶
𝑛 + 𝐶�¢
𝑚 = 𝐶|¢k# = 𝐶|� =

𝑛 + 𝐶��
𝑚  

 
meaning that we have to accept that 𝑛 = (𝐶�� − 𝐶�¢k#)/(𝐶 − 1). But then we are accepting 
that 𝑛 has at most 𝑢# digits, contradicting that 𝑛 has 𝑘 + 𝑠# or 𝑘 + 1 + 𝑠# digits since 𝑢# < 𝑠#. 
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ENTRY 12: An ABC-problem 
 

   A version of this problem was considered to rely too heavily on numerical calculations.  
 
Problem 12.1: Let 𝑘 ≥ 1 be a positive integer. The numbers 1, 2, … ,3𝑘 + 1 will be randomly 
permuted as to generate a vector 𝑣. You get only to see 𝑣#, … , 𝑣, and then be informed whether 
or not it holds true that at least one of the equalities  𝑣£/,

£3,k# = 𝑣�`,
�3/,k#  and 𝑣£`,

£3/,k# =
𝑣�/,

�3,k#  holds true. What is the probability, 𝑃 𝑘 , that you will be able to figure out with 
certainty the value of 𝑣`,k#? 
 
Solution: The answer is 𝑃 𝑘 = 0 for 𝑘 = 1 and 𝑘 ≥ 5 while 𝑃 2 = 4/315, 𝑃 3 = 1/175 
and 𝑃 4 = 1/1925. For 𝑘 = 1 there is no way for the “sum to equal the product” as that would 
require two elements of the vector to have the same value. The maximum sum of 𝑘 elements is 
given by the expression 𝑠, = (5𝑘/ + 3𝑘)/2 and the minimum product is 𝑝, = 𝑘!. Note that 
for 𝑘 ≥ 5 we get 

𝑝, − 𝑠, = 𝑘 𝑘 − 1 ! −
5
2𝑘 −

3
2 ≥ 𝑘 6(𝑘 − 1) −

5
2𝑘 −

3
2  

= 𝑘
7
2𝑘 −

15
2 =

𝑘
2 7𝑘 − 15 > 0 

 
so also for 𝑘 ≥ 5 there is no way for the “sum to equal the product”.  
 
 
   For 𝑘 = 2,3 and 4 we calculate 𝑃 𝑘  through 
 

𝑃 𝑘 =
𝑇,
𝑍,

 

 
Here 𝑍, is the numbers of ways to distribute the 3𝑘 + 1 elements into three hands (A, B, C) 
containing 𝑘 elements (labelled cards) each and one hand containing a single element. 𝑇, is the 
number of ways for A, B and C to be such that “sum B” = “product C” and/or “product B” = 
“sum C” and knowledge of that allows to work out the value of the element in the single element 
pile from the elements seen in hand A. By the combinatorial multiplication principle 
 

𝑍, =
3𝑘 + 1
𝑘

2𝑘 + 1
𝑘

𝑘 + 1
𝑘 =

3𝑘 + 1 !
𝑘!`  

 
giving 𝑍/ = 630,  𝑍/ = 16800 and 𝑍Y = 450450. The computationally more challenging part 
brings (if done correctly) 𝑇/ = 8, 𝑇 = 96 and 𝑇Y = 234. The procedure is essentially the 
following (with clarification for the case with 𝑘 = 2): 
 
(i) Find all 𝑘-tuples with a product not exceeding 𝑠,. 
 
For 𝑘 = 2 we have 𝑠/ = 13 and the 2-tuples of interest are (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), 
(1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4) 
 
(ii) For each of these 𝑘-tuples find all complementary 𝑘-tuples having element sums equal to 
the element product of the original 𝑘-tuple. Make a list of unique ordered sequences. 
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(1, 2): none. (1, 3): none. (1, 4): none. (1, 5): yes (2, 3). (1, 6): yes (2, 4). (1, 7): yes (2, 5) and 
(3, 4). (2, 3): yes (1, 5). (2, 4): yes (1, 7) and (3, 5). (2, 5): yes (3, 7) and (4, 6). (2, 6): yes (5, 7). 
(3, 4): yes (5, 7). 
 
This gives a shortlist “1235, 1246, 1257, 1347, 1235, 1247, 2345, 2357, 2456, 2567, 3457” with 
unique ordered sequences (note that 2×3 = 1 + 5 and that 2 + 3 = 1×5) “1235, 1246, 1247, 
1257, 1347, 2345, 2357, 2456, 2567, 3457” 
 
(iii) Look at the 𝑘 visible elements and the list and work out whether the missing element can 
be figured out (requires one and only one sequence not containing the elements already visible). 
 
(1, 2). Yes. A “yes” implies that 3457 can be formed by the elements in B and C so that the 
missing element must be 6. (1, 3). No. A “yes” leaves two options as there are two sequences 
missing both 1 and 3. (1, 4).  No. Same. (1, 5).  No. There is in fact no way that this renders a 
“yes”. (1, 6).  No. (1, 7).  No. 
(2, 3). No. (2, 4). No. (2, 5). Yes. Missing element must be 6. (2, 6). No. (2, 7). No. 
(3,4). No. (3, 5) No. (3,6). No. (3, 7). No. 
(4, 5). No. (4, 6) No. (4, 7) Yes. Missing element must be 6. 
(5, 6). No. (5,7) Yes. Missing element must be 3. 
(6, 7). No. 
 
Multiply the number of Yes - occurrences by 2 to get 𝑇, (think of why!). 
 
Exercise: Set up a code to verify 𝑇 = 96 and/or 𝑇Y = 234. 
 
ENTRY 13: An infimum problem 

 
 This one combines an infimum problem with an integral evaluation. 
 
Problem 13.1: For non-negative real numbers 𝑥, 𝑦 and 𝑧 define 𝑓(𝑥, 𝑦, 𝑧) as the infimum of the 
expression 1/(𝑥 + 𝑎) + 1/(𝑦 + 𝑏) 	+ 1/(𝑧 + 𝑐) over all non-negative real numbers 𝑎, 𝑏 and 
𝑐 with 𝑎 + 𝑏 + 𝑐 = 1. Evaluate 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧#

*
#
*

#
* . 

 
Solution: Let 𝐼 = 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧#

*
#
*

#
* . We shall show that  

 

𝐼 =
3
4 160 ln 2 − 90 ln 3 − 7  

 
To begin with, let us note that if 0 < 𝜀 < 𝑞# < 𝑞/ are real numbers then follows:  
 

1
𝑞# + 𝜀

+
1
𝑞/
=
𝑞# + 𝑞/ + 𝜀
𝑞#𝑞/ + 𝑞/𝜀

<
𝑞# + 𝑞/ + 𝜀
𝑞#𝑞/ + 𝑞#𝜀

=
1
𝑞#
+

1
𝑞/ + 𝜀

 

 
which goes to show that one should always add to the smallest denominator when seeking to 
minimize the sum of reciprocals with equal numerators. It follows that if it is possible to make 
the denominators equal to each other, then so should be done.  
   Let us assume that 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑧 ≤ 1 and introduce variables 𝑝#, 𝑝/ and 𝑝` to aid in the 
construction of 𝑎, 𝑏 and 𝑐. We first let 𝑝# = 𝑦 − 𝑥. After this step we have that 𝑥 + 𝑝# = 𝑦 ≤
𝑧. If 2 𝑧 − 𝑦 ≤ 1 − 𝑝#  we can set 𝑝/ = 𝑧 − 𝑦 and get that 𝑥 + 𝑝# + 𝑝/ = 𝑦 + 𝑝/ = 𝑧. We 
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can then distribute the rest (what remains to reach the sum 1) equally as to get  𝑥 + 𝑝# + 𝑝/ +
𝑝` = 𝑦 + 𝑝/ + 𝑝` = 𝑧 + 𝑝` with 𝑝` = 1 − 𝑝# − 2𝑝/. In this case we get 𝑥 + 𝑝# + 𝑝/ + 𝑝` =
𝑦 + 𝑝/ + 𝑝` = 𝑧 + 𝑝` = (1 + 𝑥 + 𝑦 + 𝑧)/3	 so that 𝑓 𝑥, 𝑦, 𝑧 = 9/(1 + 𝑥 + 𝑦 + 𝑧). If 
instead 2 𝑧 − 𝑦 > 1 − 𝑝#  we must construct 𝑝/ differently in view of the fact that we now 
have (1 − 𝑝#)/2 = (1 + 𝑥 − 𝑦)/2. In this case 𝑥 + 𝑝# + 𝑝/ = 𝑦 + 𝑝/ = (1 + 𝑥 + 𝑦)/2 < 𝑧 
and consequently we get 𝑓 𝑥, 𝑦, 𝑧 = 4/(1 + 𝑥 + 𝑦) + 1/𝑧. 
   We shall evaluate 𝐼 as 𝐼 = 𝐽 + 6𝐾 − 6𝐿 where 
 

𝐽 =
9𝑑𝑥𝑑𝑦𝑑𝑧

1 + 𝑥 + 𝑦 + 𝑧

#

*

#

*

#

*
 

𝐾 =
4

1 + 𝑥 + 𝑦 +
1
𝑧

#kªk«
/

«
𝑑𝑧𝑑𝑦𝑑𝑥

#-ª

ª

#//

*
 

 

𝐿 =
9

1 + 𝑥 + 𝑦 + 𝑧

#kªk«
/

«
𝑑𝑧𝑑𝑦𝑑𝑥

#-ª

ª

#//

*
 

 
Each integral can be evaluated in Mathematica and full simplification of the sum leads to the 
answer given above. The “sixes” in 𝐼 = 𝐽 + 6𝐾 − 6𝐿 are there to cover the six possible 
“rankings” of 𝑥, 𝑦 and 𝑧. The limits of 𝐾 and 𝐿 are specific for a ranking with 𝑥 ≤ 𝑦 ≤ 𝑧. First 
is to be noted that if 𝑥 > 1/2 there is no way that 2𝑧 − 2𝑦 > 1 + 𝑥 − 𝑦 since then would the 
equivalent inequality 2𝑧 − 𝑦 > 1 + 𝑥 be composed of a left hand side with a maximum value 
of 3/2 (𝑧 is at most equal to 1, 𝑦 is in this case at least equal to	1/2 since 𝑦 ≥ 𝑥) and a right 
hand side with a minimum value of 3/2. Next, with 𝑥 ≤ 1/2 and with 𝑦 > 1 − 𝑥 we can also 
show that there is no way for 2𝑧 − 𝑦 > 1 + 𝑥. Let 𝑦 = 1 − 𝑥 + 𝜀 where 𝜀 is a small positive 
number. Then the inequality becomes 2𝑧 − (1 − 𝑥 + 𝜀) > 1 + 𝑥 which can be rewritten as  
2𝑧 > 1 + 𝑥 + 1 − 𝑥 + 𝜀 = 2 + 𝜀 which is impossible to have fulfilled since 𝑧 ≤ 1. Finally, 
note that 2𝑧 − 𝑦 > 1 + 𝑥 is equivalent with 𝑧 > (1 + 𝑥 + 𝑦)/2. Hence, to avoid that 2𝑧 − 𝑦 >
1 + 𝑥 we must have that 𝑧 ≤ (1 + 𝑥 + 𝑦)/2. 

 
ENTRY 14: A sequence enumeration problem 
 
   A referee suspected that similar mappings as the one in the problem below may be covered 
in text books on computations. Again, if a reader is aware of earlier works dealing with the 
mapping in question I would like to know so that I can add references as a remark. For clarity, 
note that any positive integer has a unique factorial base representation. For instance, 17 =
2×3! + 2×2! + 1×1! and the factorial base representation of 17 can then be said to be [2	2	1]. 
 
Problem 14.1: Let 𝑉 be the set of all finite sequences of nonnegative integers with a strictly 
positive initial element. Is there a bijective mapping from 𝑉 to the set of positive integers such 
that if 𝑣 ∈ 𝑉 pairs with the positive integer 𝑛, then the sum of the elements in 𝑣 equals the sum 
of the coefficients in the factorial base representation of 𝑛? 
 
Solution: The answer is yes. For 𝑚 = 2	express 1 as {2,1}, for 𝑚 = 3 express 2, 3, 4 and 5 as 
{2,1,3}, {2,3,1}, {3,1,2} and {3,2,1}, respectively. To express 6 to 23 in a similar way we need 
to proceed to 𝑚 = 4 with e.g., 6 expressed as {2,1,3,4}, 17 as {3,4,2,1} and 23 as {4,3,2,1}. In 
general we express the number 𝑛 by identifying the integer 𝑚 such that  𝑚 − 1 ! ≤ 𝑛 < 𝑚! 
From this point we have that 𝑚 − 1 ! is expressed by {2,1,3,4,…, 𝑚} while 𝑛 then 
corresponds to some “higher” permutation of the same elements. Let us take the representation 
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of 𝑛 as given by the vector 𝒃 = 𝑏#, 𝑏/, … , 𝑏X  where 𝑏#, 𝑏/, … , 𝑏X are pairwise distinct 
integers ≤ 𝑚 and ≥ 1 and where 𝑏# ≥ 2. On the one hand we can compute a vector of length 
𝑚 − 1 by “asking” each of 𝑏#, 𝑏/,…, 𝑏X-# how many smaller elements that are present to its 
right. On the other hand we can compute a vector of length 𝑚 − 1 also by “asking” each of  𝑏/, 
𝑏`,…, 𝑏X how many greater elements that are present to its left. Clearly the sum of the answers 
will be equal in the two cases since each counting “lower element to the right” mirrors in a 
counting “greater element to the left”.  The first computed vector corresponds neatly to the 
factorial base representation of 𝑛 while the second corresponds to some proper integer sequence 
if omitting all (potentially existing) initial zeros. That the mapping is bijective can be 
understood from that we can apply the procedure starting from any arbitrary sequence of 𝑉. As 
an example, the sequence 𝑣 = 	 [2	0	5	3	3	8	5] has 8 at its sixth position. We may insert two 
zeros to shift the 8 to the 8: th position. From a modified 𝑣 vector of  
 

𝑣 = 	 [0	0	2	0	5	3	3	8	5] 
 
we get  
 

𝒃 = {3, 8, 9, 4, 10, 2, 6, 7, 1, 5} 
 
and a factorial base representation of [2	6	6	2	5	1	2	2	0] corresponding to 𝑛 = 10°. 
 
ENTRY 15: A problem inspired by Kaprekar’s constant 
 
   Consider the following algorithm: 
 
 i) Start with any four-digit number including ones with leading zeros but excluding ones where 
all four digits are the same.  
ii) Construct the largest and the smallest numbers containing all four digits and calculate the 
difference.  
iii) Using the difference, repeat step (ii) until arriving at a difference seen before.  
 
As an example, say that we start with 7665: 7665 à 7665-5667 = 1998 à 9981-1899 = 8082 
à 8820 – 0288 = 8532 à 8532-2358 = 6174 à  7641 – 1467 = 6174 (stop!) 
 
No matter what acceptable four-digit number one starts with the outcome will be that the 
procedure ends at 6174. This is famously known as Kaprekar’s constant. One may say that  
 

𝑑 − 𝑎 − 𝑐 10` + 𝑐 − 𝑏 − 𝑎 10/ + 𝑏 − 𝑐 − 𝑑 10 + 𝑎 − 𝑑 − 𝑏 = 0 
 
is only satisfied by 𝑎, 𝑏, 𝑐, 𝑑 = (1,4,6,7) under prevalent restrictions. Replacing the 10,:s by 
other expressions and seeking to solve the resulting equation with different restrictions led to 
the following problem proposal, the rejection of which in part may have been due to me not  
finding a smooth way to illustrate the (perhaps vague) connection to Kaprekar’s constant.   
 
Problem 15.1: Let 𝑎, 𝑏, 𝑐, 𝑑 and 𝑡 be integers with 0 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑, 𝑡 ≥ 1 and with 
 

𝑑 − 𝑎 − 𝑐
𝑎𝑏𝑐𝑑
𝑡

`

+ 𝑐 − 𝑏 − 𝑎
𝑎𝑏𝑐𝑑
𝑡

/

+ 𝑏 − 𝑐 − 𝑑
𝑎𝑏𝑐𝑑
𝑡 + 𝑎 − 𝑑 − 𝑏 = 0 
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We refer by a solution to a quintuple (𝑎, 𝑏, 𝑐, 𝑑, 𝑡) fulfilling the above requirements. 
 
(a) Are there infinitely many solutions?  
(b) Is there any solution with 𝑡 being non-composite? 
(c) Is there any solution with 𝑡 being semiprime? 
 
Solution: We shall arrive at the following answers: 
 
(a) Yes, for instance, for any positive integer 𝑛 one may select to set 𝑎 = 5𝑛,	𝑏 = 10𝑛 + 2, 
𝑐 = 15𝑛 + 3, 𝑑 = 20𝑛 + 3 and 𝑡 = 6𝑛(5𝑛 + 1)(20𝑛 + 3) to get a solution. 
 
(b) No, there is no solution with 𝑡 being equal to 1 or equal to a prime number.  
 
(c) Yes, there are solutions with semiprime 𝑡, e.g., 𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 7 and 𝑡 = 21. 
 
Introduce 𝑀 =  �K²

l
. Assume first that 𝑀 is an integer such that 𝑀 > 𝑑. Then we can rewrite 

the equation as  
 
𝑑 − 𝑎 𝑀` + 𝑐 − 𝑏 𝑀/ + 𝑏 − 𝑐 𝑀 + 𝑎 − 𝑑 = 𝑐𝑀` + 𝑎𝑀/ + 𝑑𝑀 + 𝑏  

 
and apply 𝑀 −	adic subtraction (recall 0 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑀) to get an equation system 
with the four equations: 𝑏 = 𝑀 + 𝑎 − 𝑑, 𝑑 = 𝑏 − 1 − 𝑐 +𝑀, 𝑎 = 𝑐 − 1 − 𝑏 and 𝑐 = 𝑑 − 𝑎. 
For a fixed value of 𝑎 we are left with equally many unknowns as equations and we find a 
unique solution with: 
 
𝑀 = 5(𝑎 + 1), 𝑏 = 2(𝑎 + 1), 𝑐 = 3(𝑎 + 1), 𝑑 = 4𝑎 + 3.  (*) 
 
For consistency we require then that 
 
 �K²
l
=   /  k# `  k# Y k`

l
= 5 𝑎 + 1 = 𝑀  

 
⟺ 6𝑎 𝑎 + 1 4𝑎 + 3 = 5𝑡    (**) 
 
The left hand-side contains at least four (not necessarily distinct) prime factors so for a solution 
to exist while 𝑀 is an integer with 𝑀 > 𝑑 cannot 𝑡 be restricted to have at most two prime 
factors. The provided answer to part (a) follows by setting 𝑎 = 5𝑛 in (*) and (**). 
   To complete part (b) we must rule out the existence of solutions with non-composite 𝑡 when 
𝑀 ≤ 𝑑 and/or when 𝑀 is not an integer. Multiplying the equation in the problem formulation 
by 𝑡` and rearranging gives the equation 
 
𝑑 − 𝑎 − 𝑐 𝑎𝑏𝑐𝑑 ` + 𝑐 − 𝑏 − 𝑎 𝑡 𝑎𝑏𝑐𝑑 / + 𝑏 − 𝑐 − 𝑑 𝑡/ 𝑎𝑏𝑐𝑑 − 𝑑𝑡` = 𝑏 − 𝑎 𝑡` 

 
Note that the left hand side has 𝑑 as integer factor. We must then have that there exist a positive 
integer 𝑘 such that 𝑘𝑑 = (𝑏 − 𝑎)𝑡`. Since 𝑑 > (𝑏 − 𝑎) follows that 𝑡` > 𝑘. On the one hand 
this immediately rules out the possibility that 𝑡 = 1. On the other hand, if 𝑡 is prime follows 
that the prime factorization of 𝑘 cannot contain three factors equal to 𝑡 and hence must the 
prime factorization of 𝑑 contain at least one factor equal to 𝑡. This shows that a hypothetical 
solution when 𝑡 is prime must be such that	𝑑/𝑡 ≥ 1 and such that 𝑀 is an integer. 
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   Note that the equation in the problem formulation also can be rearranged as: 
 
𝑑 𝑀` −𝑀 − 1 = 𝑎 𝑀` +𝑀/ − 1 + 𝑏 𝑀/ −𝑀 + 1 + 𝑐(𝑀` −𝑀/ +𝑀)  
 
This can be rewritten as 
 
𝑑 = 𝑎𝑓  𝑀 + 𝑏𝑓� 𝑀 + 𝑐𝑓K(𝑀)  
 
where the functions 𝑓  𝑥 , 𝑓� 𝑥  and	𝑓K 𝑥  are defined by 
 
𝑓  𝑥 = ª´kª¢-#

ª´-ª-#
; 𝑓� 𝑥 = ª¢-ªk#

ª´-ª-#
; 𝑓K 𝑥 = ª´-ª¢kª

ª´-ª-#
  

 
Since 𝑎𝑏𝑐 ≥ 6 and since 𝑑/𝑡 ≥ 1 (when 𝑡 is prime) follows that 𝑀 = 𝑎𝑏𝑐𝑑/𝑡 ≥ 6. When 𝑥 ≥
6 it is easy to show that 1 < 𝑓  𝑥 ≤ 251/209, 0 < 𝑓� 𝑥 ≤ 31/209 and 186/209 ≤ 𝑓K 𝑥 <
1. It so follows that (note that	𝑎 ≥ 1, 𝑏 ≥ 2 and 𝑐 ≥ 3):  
 

𝑑 = 𝑎𝑓  𝑀 + 𝑏𝑓� 𝑀 + 𝑐𝑓K 𝑀 <
251
209

𝑎 +
31
209

𝑏 + 𝑐 <
𝑏𝑐
3
𝑎 +

𝑎𝑐
6
𝑏 +

𝑎𝑏
2
𝑐 = 𝑎𝑏𝑐 ≤

𝑎𝑏𝑐𝑑
𝑡

= 𝑀 

 
or in short 𝑑 < 𝑀. But we have already excluded solutions where 𝑡 is a prime number when 𝑀 
is an integer exceeding 𝑑. 
   For part (c). Numerical calculations restricting 𝑡 and 𝑑 to values ≤ 120 render five solutions  
 
𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 7, 𝑡 = 21 
𝑎 = 1, 𝑏 = 3, 𝑐 = 5, 𝑑 = 7, 𝑡 = 35 
𝑎 = 1, 𝑏 = 6, 𝑐 = 9, 𝑑 = 10, 𝑡 = 72 
𝑎 = 1, 𝑏 = 3, 𝑐 = 5, 𝑑 = 10, 𝑡 = 75 
𝑎 = 1, 𝑏 = 2, 𝑐 = 8, 𝑑 = 13, 𝑡 = 104 
 
of which the first two listed involve semiprime values of 𝑡. From the quintuple on the third line 
may also be noted that solutions must not be such that 𝑎𝑏𝑐𝑑/𝑡 is integer valued. 
 
ENTRY 16: A problem involving primes and Pythagorean triangles 

 
   A Pythagorean triangle is a right angled triangle with exclusively integer side lengths.  
 
Problem 16.1: Verify that the following conversation actually makes sense: 
 
Alice: - “Hmm. So what were you saying?” 
Bob: - “I’m saying that 𝑛 is a positive even number…” 
Alice: - “And what were you saying about 𝑆&?” 
Bob: - “That it only contains the numbers &

/
+ 1, &

/
+ 2 and so on until 𝑛 − 2.” 

Alice: - “Ok. And you were saying that there is only one element, say 𝑘, in 𝑆&, with the property 
that 𝑛 − 𝑘 + 1 is a proper divisor of 𝑘?” 
Bob: - “Yes, and also that there is no element, say 𝑡, within 𝑆& being lower than 𝑘 and such that 
𝑛 + 1 − 𝑡 is a proper divisor of 2𝑡 − 𝑛.” 
Alice: - “So you are saying that 𝑛/2 is any even leg of a Pythagorean triangle in which the other 
leg and the hypotenuse are primes?” 
Bob: - “Yes, exactly!” 
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Solution: Let 𝑟 be an integer such that for some 𝑘 ∈ 𝑆& 
 

𝑟 =
𝑘

𝑛 − 𝑘 + 1 =
1

𝑛 + 1
𝑘 − 1

⟺
𝑛 + 1
𝑘 =

1 + 𝑟
𝑟 ⟺ 𝑘 =

𝑟(𝑛 + 1)
𝑟 + 1  

 
We get that 𝑛 + 1 is of the form 𝑚(𝑟 + 1) while 𝑘 then is of the form 𝑚𝑟. The existence of 
another solution 𝑘# would require the possibility to express  𝑛 + 1 = 𝑚#(𝑟# + 1) and moreover 
𝑘# = 𝑚#𝑟#. We would have 𝑚𝑟 +𝑚 = 𝑚#𝑟# + 𝑚# at the same time as 𝑚𝑟 ≠ 𝑚#𝑟#.  
   If 𝑛 + 1 would be prime than we would be forced to set 𝑚 = 1. But then we get 𝑟 = 𝑛 + 1 
and 𝑘 = 𝑛 + 1 //(𝑛 + 2) which clearly is not an integer since 𝑛 + 1  and 𝑛 + 2  have no 
common prime factors. If 𝑛 + 1 = 𝑝𝑞 with 𝑝 an odd prime number and 𝑞 > 1 an odd number 
we could set 𝑚 = 𝑝 to get 𝑟 = 𝑞 − 1 and 𝑘 = µ-# &k#

µ
= µ-# gµ

µ
= 𝑞 − 1 𝑝 ∈ ℤ. We could 

alternatively set 𝑚# = 𝑞 to get 𝑟# = 𝑝 − 1 and 𝑘# =
(g-#)(&k#)

g
= (g-#)gµ

g
= 𝑝 − 1 𝑞 ∈ ℤ. It 

can be shown that 𝑘 ∈ 𝑆& and 𝑘# ∈ 𝑆&, we shall only verify it for 𝑘 here (the other is shown 
analogously) . Note that 
 
𝑘 = 𝑞 − 1 𝑝 = 𝑝𝑞 − 𝑝 = 𝑛 + 1 − 𝑝 ≤ 𝑛 − 2  
 
and since 𝑝 > 2 
 
𝑘 = 𝑝𝑞 − 𝑞 > 𝑝𝑞 − gµ

/
= gµ

/
= &k#

/
⇒ 𝑘 ≤ &

/
+ 1  

 
It seems as if the only way to get a single element 𝑘 with the property that 𝑛 − 𝑘 + 1 is a proper 
divisor of 𝑘 is for 𝑛 + 1 to be of the form 𝑝/. We then get 𝑘 = 𝑝(𝑝 − 1) which obviously is 
part of 𝑆&. Thus we now know that we are required to have 𝑛 + 1 = 𝑝/. 
   Next we seek to explore requirements on 𝑛 as to exclude 
 

2𝑡 − 𝑛
𝑛 + 1 − 𝑡 ∈ ℤ 

 
while &

/
+ 1 ≤ 𝑡 < 𝑘. Note that 𝑛 + 1 = 𝑝/ so that 𝑛 = (𝑝 − 1)(𝑝 + 1) is divisible by 4. This 

shows that 𝑛 + 2 is of the form 2𝑝#𝑞# where 𝑝# and 𝑞# are odd and 𝑝# is a prime. We may set 
2𝑞# = 𝑄#. We have that 𝑛 + 2 = 𝑝/ + 1 = 2𝑝#𝑞# = 𝑝#𝑄# meaning that either 𝑝# or 𝑄# exceeds 
𝑝. Let 𝐻 = max 𝑝#, 𝑄#  and 𝐿 = min 𝑝#, 𝑄# . Select 𝑡 = 𝐻𝐿 − (𝐻 + 1) as to get 
 

2𝑡 − 𝑛
𝑛 + 1 − 𝑡 =

2(𝑡 + 1) − (𝑛 + 2)
𝑛 + 2 − (𝑡 + 1) =

2(𝐻𝐿 − 𝐻) − 𝐻𝐿
𝐻𝐿 − (𝐻𝐿 − 𝐻) = 𝐿 − 2 

 
Only 𝐿 = 2, i.e., 𝑞# = 1, can prevent this from being an integer. We return to this case soon but 
work for the moment with the assumption that 𝐿 > 2. Then does 𝑡 = 𝐻𝐿 − (𝐻 + 1) bring a 
positive integer ratio and moreover since 𝐻 > 𝑝 
 

𝐻𝐿 − 𝐻 + 1 = 𝑛 + 2 − 𝐻 − 1 = 𝑛 + 1 − 𝐻 = 𝑝/ − 𝐻 < 𝑝 𝑝 − 1 = 𝑘 ⟹ 𝑡 < 𝑘 
 
and since we are working with 𝐿 > 2 
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𝐻𝐿 − 𝐻 + 1 = 𝑛 + 1 − 𝐻 = 𝑛 + 1 −
𝑛 + 2
𝐿 > 𝑛 + 1 −

𝑛 + 2
2 =

𝑛
2 ⟹ 𝑡 ≤

𝑛
2 + 1 

 
If 𝐿 = 2 we get the scenario that &

/
+ 1 is a prime number and we seek positive integers 𝑡 and 

𝑠 so that 
 

2𝑡 − 𝑛
𝑛 + 1 − 𝑡 = 𝑠 ⟺ 𝑡 + 1 =

2 𝑛
2 + 1 𝑠 + 1
𝑠 + 2  

 
The equivalence follows from non-displayed algebra. Note that 𝑠 + 1 and  𝑠 + 2 have no 
common prime factors so for 𝑡 to be an integer must 𝑠 + 2 = 2 &

/
+ 1  or 𝑠 + 2 = &

/
+ 1. Both 

of these cases (as can be seen by re-expressing 𝑠 + 1 accordingly) forces 𝑡 > 𝑝 𝑝 − 1 = 𝑘. 
As we do not want solutions we require &

/
+ 1 to be prime. In net we require 𝑛 + 1 = 𝑝/ and 

&
/
+ 1 = 𝑞 with 𝑝 and 𝑞 odd prime numbers. Note that with this setting 𝑝/ − 𝑞/ = 𝑛 + 1 −

	 &
/
+ 1

/
= &

/

/
 so  &

/
 fits indeed as an even leg in a Pythagorean triangle whose other leg and 

hypotenuse are both prime.  
   We conclude by remarking on the (possibly well known) fact that in any Pythagorean triangle 
with an even leg and with the other sides prime, the hypotenuse must be exactly 1 unit length 
longer than the even leg. With 𝑝 and 𝑞 prime with 𝑝 > 𝑞 and with 1 ≤ 𝑚 ≤ 𝑝 − 1 we get 
 

𝑝/ − 𝑞/ = 𝑝 −𝑚 / = 𝑝/ − 2𝑚𝑝 +𝑚/ ⟺ 𝑞/ = 𝑚(2𝑝 −𝑚) 
 
forcing us to set 𝑚 = 1 since 𝑚 = 𝑞 would enforce 𝑝 = 𝑞 and since 𝑚 = 𝑞/ would force us to 
set 2𝑝 − 𝑞/ = 1 which is not possible since 𝑝 −𝑚 ≥ 1 and hence 2𝑝 −𝑚 > 1. 
 
ENTRY 17: A laser-and-mirrors type of problem 
 
   This one was considered somewhat tedious. The referee saw ways to shorten the solution. 
 
Problem 17.1: In the Cartesian plane are drawn blue solid lines between (0,0) and (0,1) and 
between (1,0) and (1,1). For each positive integer, 𝑝, strictly smaller than the positive integer 
𝑚, is then drawn a red line line between (0, 𝑝/𝑚) and (1/𝑚, 𝑝/𝑚). A moving point is then 
ejected northeast from (0,0) and subject to no forces. If hitting a blue line it is reflected with the 
angle of incidence equal to the angle of reflection. 
 
(a) For what combinations of 𝑚 and 𝑛 is it possible that the moving point makes its first contact 
with the line between (0,1) and (1,1) having touched no red line and having been reflected 
exactly 𝑛 times?  
 
(b) Consider the same setup specifically for 𝑚 = 5 but with a northwest ejection from (1,0) of 
the moving point. Show that there exist red-line-avoiding ways out that involve exactly 𝑛 
reflections if and only if the final digit of 𝑛 is 0, 3, 6 or 9. 
 
   The figure below shows the setup with 𝑚 = 3 as well as two examples of trajectories starting 
from (0,0) and avoiding red lines. One trajectory involves 𝑛 = 1 reflection, the other 𝑛 = 2 
reflections.   
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Solution: (a) For 𝑚 = 1 any finite value of 𝑛 works, including 𝑛 = 0. For 𝑚 ≥ 2, any strictly 
positive value of 𝑛 works as long at it is not of the form 2𝑘𝑚 or 2𝑘𝑚 − 1 where 𝑘 is a positive 
integer.  
 
   In the case with 𝑚 = 1 there is no red line at all to worry about and we can adjust the ejection 
angle of the moving point to make any number of reflections possible. We assume in what 
follows that 𝑚 ≥ 2.    As the angle of incidence equals the angle of reflection we can, instead 
of considering reflections, let the moving point continue along a straight line to ever growing 𝑥 
values. For this analogy to work we must, however, place red lines not only between (0, 𝑝/𝑚) 
and (1/𝑚, 𝑝/𝑚) for 𝑝 = 1,2… ,𝑚 − 1 but also, for any positive integer 𝑘, between (2𝑘 −
1/𝑚, 𝑝/𝑚) and  (2𝑘 + 1/𝑚, 𝑝/𝑚). Any straight line with positive slope that goes from (0,0) 
to (𝑥 = 𝑥∗ > 0,1) without touching a red line signals a “good 𝑚, 𝑛 combination” if in addition 
the integer part of 𝑥∗	equals 𝑛. It is easy to see that the the red line between (2𝑘 − 1/𝑚, 1/𝑚) 
and (2𝑘 + 1/𝑚, 1/𝑚) when viewed from (0,0) shadows out the region with 𝑦 = 1 spanning 𝑥 
values from 𝑥� to  𝑥�� where 𝑥� = 1 1/𝑚 (2𝑘 − 1/𝑚) = 2𝑘𝑚 − 1 and 𝑥�� =
1 1/𝑚 (2𝑘 + 1/𝑚) = 2𝑘𝑚 + 1. All 𝑥 values strictly within the interval are characterized 
by integer parts of either 2𝑘𝑚 − 1 or 2𝑘𝑚 and, as in shadow, follows that a combination of 
𝑚 ≥ 2 with 𝑛 of the form 2𝑘𝑚 or 2𝑘𝑚 − 1 (where 𝑘 is a positive integer) cannot “be good”. 
Note that while casting shadows (at 𝑦 = 1) over the entire intervals of 𝑥-values characterized 
by integer parts of 2𝑘𝑚 − 1 and 2𝑘𝑚, the red lines characterized by 𝑝 = 1 cast no shadow on 
any part of any other integer interval. 
   We shall prove that the red lines with 𝑝 > 1 cannot shadow out the entirety of any “integer 
interval”. Let us make a few observations. First, a red line at height 𝑦 = 𝑝/𝑚 casts a shadow 
at 𝑦 = 1 of width 2/𝑝, since: 
 

1
𝑝
𝑚 2𝑘 +

1
𝑚 − 1

𝑝
𝑚 2𝑘 −

1
𝑚 =

2
𝑝 

 
Second, a red line with 𝑝 = 2 casts a shadow at 𝑦 = 1 centered around an integer value, since: 
 

1
2
𝑚 2𝑘 = 𝑘𝑚 

 
Third, the shadow centers at 𝑦 = 1 due to two adjacent red lines with the same value of 𝑝 are 
separated by more than 2 length units since the separation must exceed the separation between 
the centers of the adjacent red lines which is exactly 2 length units. The observations tell that 
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an integer interval at 𝑦 = 1 at most can be 50% shaded by a red line with 𝑝 = 2. Moreover, if 
an integer interval is partly shaded by a red line with 𝑝 = 2, it cannot be partly shaded by any 
other red line with 𝑝 = 2. It follows also that the same integer interval cannot be partly shaded 
by more than one red line of any fixed 𝑝 value. We shall now show that a collection of red lines 
of pairwise distinct 𝑝 > 1 values cannot shadow out the entirety of an integer interval. Note 
that such a scenario would require there to be shadows overlapping that do not possess common 
shadow centers. On the contrary we shall prove that if it happens that a point at 𝑦 = 1 is in the 
shadow of two distinct red lines then must hold true that the projected shadow of each have a 
common center. That is, if there exists a real number 𝑥, such that there exists distinct positive 
integers 𝑘� and 𝑘�� and distinct positive integers 𝑝′ < 𝑝�� < 𝑚 with 
 

2𝑘�𝑚 − 1
𝑝′ < 𝑥 <

2𝑘�𝑚 + 1
𝑝′

2𝑘��𝑚 − 1
𝑝′′ < 𝑥 <

2𝑘��𝑚 + 1
𝑝′′

 

 
then must be the case that /,

¾X
g¾

= /,¾¾X
g¾¾

. The statement just made is equivalent to the following 
lemma the proof of which completes our solution of part (a). 
 
Lemma 1: Given that 𝑎, 𝑏,𝑚, 𝑝 and 𝑞 are positive integers with 𝑝 < 𝑞 < 𝑚, then exists a real 
valued 𝑥 with / X-#

g
< 𝑥 < / Xk#

g
 and /�X-#

µ
< 𝑥 < /�Xk#

µ
 if and only if 𝑎/𝑝 = 𝑏/𝑞. 

 
Proof of Lemma 1: Assume first that  

g
= �

µ
= 𝑟. Then the first interval goes from 2𝑟𝑚 − #

g
 to 

2𝑟𝑚 + #
g
 while the other interval goes from 2𝑟𝑚 − #

µ
 to 2𝑟𝑚 + #

µ
. It is clear that both intervals 

contain 𝑥 = 2𝑟𝑚 and hence is the intersection of the intervals non-empty. Assume in what 
follows that  

g
≠ �

µ
 . 

   We shall begin by showing that when  
g
≠ �

µ
 and when 𝑝 < 𝑞 < 𝑚 it follows that  / X-#

g
<

/�X-#
µ

 implies that / Xk#
g

< /�X-#
µ

. If we can show that /�X-#
µ

− / X-#
g

> /
g
 we are done since 

obviously the difference / Xk#
g

− / X-#
g

= /
g
. We have that 

 

2𝑏𝑚 − 1
𝑞 −

2𝑎𝑚 − 1
𝑝 =

1 − 𝑝𝑞 +
2𝑚
𝑞 𝑏𝑝 − 𝑎𝑞

𝑝  

 
 
Note that 0 < 1 − g

µ
< 1 and that /X

µ
> 2. It must be that 𝑏𝑝 − 𝑎𝑞 equals an integer. The integer 

in question cannot be zero since 𝑏𝑝 = 𝑎𝑞 ⟺ �
µ
=  

g
 which contradicts  

g
≠ �

µ
. If 𝑏𝑝 − 𝑎𝑞 is a 

negative integer then would follow that #
g
1 − g

µ
+ 2𝑚 �g

µ
− 𝑎 < #k/ -#

g
< 0 contradicting 

the very fact that /�X-#
µ

− / X-#
g

> 0. We must thus assume that 𝑏𝑝 − 𝑎𝑞 is a positive integer 
and we then get that 
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2𝑏𝑚 − 1
𝑞 −

2𝑎𝑚 − 1
𝑝 =

1 − 𝑝𝑞 +
2𝑚
𝑞 𝑏𝑝 − 𝑎𝑞

𝑝 >
0 + 2× 1

𝑝 =
2
𝑝 

 
   We shall finally show that when  

g
≠ �

µ
 and when 𝑝 < 𝑞 < 𝑚 it follows that  / X-#

g
> /�X-#

µ
 

implies that / X-#
g

> /�Xk#
µ

. If we can show that / X-#
g

− /�X-#
µ

> /
µ
 we are done since 

obviously the difference /�Xk#
µ

− /�X-#
µ

= /
µ
. We have that 

 
2𝑎𝑚 − 1

𝑝 −
2𝑏𝑚 − 1

𝑞 =
1
𝑞 −

1
𝑝 +

2𝑚
𝑝𝑞 𝑎𝑞 − 𝑏𝑝  

 
and since 𝑝 < 𝑞 must the integer 𝑎𝑞 − 𝑏𝑝 be positive in order for / X-#

g
− /�X-#

µ
 to exceed 

zero. Since 𝑎𝑞 − 𝑏𝑝 ≥ 1 follows that 
 

1
𝑞 −

1
𝑝 +

2𝑚
𝑝𝑞 𝑎𝑞 − 𝑏𝑝 ≥

1
𝑞 −

1
𝑝 +

2
𝑞
𝑚
𝑝 =

2
𝑞
𝑚
𝑝 +

1
2 −

𝑞
2𝑝  

 
It remains to show that  X

g
+ #

/
− µ

/g
> 1. But since 𝑞 ≤ 𝑚 − 1 and since 𝑚 + 1 > 𝑝 follows 

that 
 

𝑚
𝑝 +

1
2 −

𝑞
2𝑝 ≥

𝑚
𝑝 +

1
2 −

𝑚 − 1
2𝑝 =

2𝑚 −𝑚 + 1
2𝑝 +

1
2 =

𝑚 + 1
2𝑝 +

1
2 >

𝑝
2𝑝 +

1
2 = 1. 

 
(b) We leave this as an exercise, merely noting that the scenario is equivalent to one with 
northeast ejection from (0,0) and with red lines shifted to instead be attached to the right wall. 
 
ENTRY 18: Problems solved by turning sums into integrals 
 
   I suspect that the trick utilized in the solution to the problem below is not original. A multitude 
of special series identities (including the one in the exercise at the end of the entry) can be 
worked out via the same type of step. 
 
Problem 18.1: Evaluate 
 

lim
&→i

1
𝑛 𝑘 𝑛 − 𝑘 + 4 − 𝑛 − 𝑘

&

,3#

 

 
Solution: The answer is 𝜋.  We have 
 

lim
&→i

1
𝑛 𝑘 𝑛 − 𝑘 + 4 − 𝑛 − 𝑘 				

&

,3#

= lim
&→i

𝑘
𝑛

𝑛 − 𝑘 + 4
𝑛 −

𝑛 − 𝑘
𝑛 				

&

,3#
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= lim
&→i

𝑘
𝑛

𝑛 − 𝑘 + 4
𝑛 − 𝑛 − 𝑘

𝑛
4/𝑛

4
𝑛			

&

,3#

= 4 lim
&→i

𝑘
𝑛

𝑛 − 𝑘 + 4
𝑛 − 𝑛 − 𝑘

𝑛
4/𝑛

1
𝑛			

&

,3#

 

 

= 4 lim
&→i

𝑘
𝑛

𝑓 1 − 𝑘𝑛 + ℎ∗ − 𝑓 1 − 𝑘𝑛
ℎ∗

1
𝑛			

&

,3#

 

 
where we have introduced ℎ∗ = 4/𝑛. But since ℎ∗ → 0 as 𝑛 → ∞ can the expression in the big 
parentheses be viewed as the derivative of 𝑓(𝑥) if setting 𝑓 𝑥 = 𝑥 and 𝑥 = 1 − ,

&
 . Then is 

,
&
= 1 − 𝑥 and we may view 𝑘/𝑛  as 𝑔 𝑥 = 1 − 𝑥. Stepping 𝑘 from 1 to 𝑛, each time 

accounting for the factor 1/𝑛, may be viewed as taking care of the 𝑑𝑥 while integrating from 0 
to 1. We thus get that 
 

4 lim
&→i

𝑘
𝑛

𝑓 1 − 𝑘𝑛 + ℎ∗ − 𝑓 1 − 𝑘𝑛
ℎ∗

1
𝑛 = 4 𝑔 𝑥 𝑓′(𝑥)𝑑𝑥

#

*
		

&

,3#

 

= 4
1 − 𝑥
2 𝑥

𝑑𝑥
#

*
= 2

1
𝑥 − 1	𝑑𝑥

#

*
= 𝜋 

 

where 𝑓 𝑥 = 𝑥 , 𝑓′ 𝑥 = #
/ ª

 , 𝑔 𝑥 = 1 − 𝑥  and where the equality #
ª
− 1	𝑑𝑥#

* = D
/
 is 

considered well known. 
 
Exercise: Prove that 
 

lim
&→i

ln
𝑘
𝑛 ln

𝑛 − 𝑘
𝑛 + 1 − 𝑘

&-#

,3#

=
𝜋/

6  

 
ENTRY 19: Cutting papers and breaking sticks problems 
 
   The following problem contains several steps passed by via the use of Mathematica. The 
solution contains two implicit exercises, namely to reason why the integrands of the double 
integrals look the way they do. 
 
Problem 19.1: A point is selected randomly on the perimeter of a rectangular paper. Another 
point is then selected randomly from one of the other three sides. A straight cut is made between 
the two points so that the paper is divided into two regions with areas 𝐴# ≤ 𝐴/. Let 𝜀 be the 
expectation value of 𝐴#/𝐴/. Determine the range of possible values of 𝜀. 
 
Solution: We shall show that 𝜀 can only take any value fulfilling 𝜀# ≤ 𝜀 < 𝜀/ where 
 

𝜀# =
ln 2Yy − 42 + 2𝜋/ − 12 ln 2 /

18 ≈ 0.291379… ; 𝜀/ = ln 2y − 5 ≈ 0.545166…	 
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For points on opposite sides we get (rectangular area elements transformed to squares): 
 

𝜀Àgg = 2
1 − 𝑥# + 𝑥/2
𝑥# + 𝑥/
2

#

ª¢3#-ª�

#

ª�3*

𝑑𝑥/𝑑𝑥# = 2
2 − (𝑥# + 𝑥/)
𝑥# + 𝑥/

#

ª¢3#-ª�

#

ª�3*

𝑑𝑥/𝑑𝑥# = ln 2y − 5 

 
where Mathematica was used for the final step. For points on adjacent sides we get: 
 

𝜀 ²� =
𝑥1𝑥2/2

1− 𝑥1𝑥2/2
1

𝑥2=0

1

𝑥1=0
𝑑𝑥2𝑑𝑥1 =

𝑥1𝑥2
2− 𝑥1𝑥2

1

𝑥2=0

1

𝑥1=0
𝑑𝑥2𝑑𝑥1 =

𝜋2
6 − 1+ ln2 2 		 

 
where Mathematica was used for the final step. For an aspect ratio of 𝑎: 𝑏 follows that 
 

𝜀 =
𝑎

𝑎 + 𝑏
𝑎

𝑎 + 2𝑏
+

𝑏
𝑎 + 𝑏

𝑏
2𝑎 + 𝑏

𝜀Àgg +
𝑎

𝑎 + 𝑏
2𝑏

𝑎 + 2𝑏
+

𝑏
𝑎 + 𝑏

2𝑎
2𝑎 + 𝑏

𝜀 ²� 
 
As  �

 
→ ∞ (and, by symmetry, as  �

 
→ 0) we get 𝜀 → 1𝜀Àgg + 0𝜀 ²� = 𝜀Àgg. As 𝜀Àgg > 𝜀 ²� 

is there no way for 𝜀 to reach or exceed 𝜀Àgg = 𝜀/, but one can come arbitrarily close. To 
minimize  𝜀 we seek to make the factor in front of 𝜀 ²� as big as possible. We introduce 𝑥 =
𝑏/𝑎 to get 
 

𝑎
𝑎 + 𝑏

2𝑏
𝑎 + 2𝑏

+
𝑏

𝑎 + 𝑏
2𝑎

2𝑎 + 𝑏
=

1
1 + 𝑥

2𝑥
1 + 2𝑥

+
𝑥

1 + 𝑥
2

2 + 𝑥
≡ 𝑓(𝑥) 

 
 
and find through Mathematica (or other way) that 𝑓(𝑥) has its global maximum at 𝑥 = 1 with 
𝑓 1 = /

`
.   We thus get that 𝜀 ≥ #

`
𝜀Àgg +

/
`
𝜀 ²� = 𝜀# and we leave out presenting the trivial 

steps needed to reach the closed form of 𝜀# presented above. 
 
Exercise: A thin stick is broken on two random locations into three smaller sticks of lengths 
𝑠# ≤ 𝑠/ ≤ 𝑠`. Show that the expectation value of 𝑠#/𝑠` is given by 1 + ln 𝑡 where 𝑡 = /�¢

`Â
. 

 
ENTRY 20: A sequence within a sequence problem 
 
   Before tackling the problem below take as an exercise to prove that 𝑏#, 𝑏/, …  (as introduced 
in the problem statement) really exist. 
 
Problem 20.1: Let 𝑎#, 𝑎/, 𝑎`, … be an infinite sequence of strictly increasing positive integers 
(e.g., the prime numbers). Let 𝑏* = 0 and let, for integers 𝑘 ≥ 1, 𝑏, be the minimum 
nonnegative integer that makes (𝑎, + 𝑏,-# − 𝑏,)/𝑎,k# an integer Let 𝑗X be the index of the 
𝑚:th entry among 𝑏*, 𝑏#, 𝑏/, …   that is strictly higher than its lower-index neighboring element. 
 
(a) Is 𝑗#, 𝑗/, 𝑗`, … an infinitely long sequence? 
 
(b) Show that 𝑏�e ≥ 𝑎�e and that  𝑏�eÃ� − 𝑏�e = 𝑎�ek#. 
 
Solution: a) Yes, it is. Assume the opposite, that 𝑗#, 𝑗/, 𝑗`, … is not an infinitely long sequence. 
Then is there a maximum index 𝑘 = 𝑘∗ for which 𝑏, > 𝑏,-#. For 𝑘 > 𝑘∗ we must then always 
have 𝑏,-# − 𝑏, < 0 since 𝑏,-# = 𝑏, would imply 
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𝑎, + 𝑏,-# − 𝑏,

𝑎,k#
=

𝑎,
𝑎,k#

 

 
which cannot be an integer since with 0 < 𝑎, < 𝑎,k# we get 0 < 𝑎,/𝑎,k# < 1. But since 𝑏,∗ 
is finite is it impossible to continue in limitless fashion reducing  the value of subsequent "𝑏-
values” while respecting that each 𝑏-value must be a nonnegative integer. 
 
b) We shall let 𝑠 = 𝑗X and 𝑠 + 𝑛 = 𝑗Xk#. We have that 𝑎|k# > 𝑎| and 𝑏| > 𝑏|-# so the fact 
that 
 

𝑎| + 𝑏|-# − 𝑏|
𝑎|k#

∈ 0,1,2, …  

 
implies that 𝑎| + 𝑏|-# = 𝑏| which immediately tells that 𝑏| ≥ 𝑎| since 𝑏|-# ≥ 0. It remains to 
show that 𝑏|k& − 𝑏| = 𝑎|k#. We do this via a lemma. 
 
Lemma 1: It holds true that 𝑏, < 𝑎,k# for all 𝑘 ≥ 1 and that 𝑏,k# is given by the minimum 
nonnegative number among 𝑎,k# + 𝑏, − 𝑎,k/ and 𝑎,k# + 𝑏,. 
 
Proof by induction: We always have 𝑏# = 𝑎# so that 𝑏# < 𝑎/. Assume that 𝑏, < 𝑎,k# for all 
integers up to 𝑘. We shall show that this implies that 𝑏,k# < 𝑎,k/. We have that 
 

𝑎,k# + 𝑏, − 𝑏,k#
𝑎,k/

<
2𝑎,k# − 𝑏,k#

𝑎,k/
< 2 −

𝑏,k#
𝑎,k/

 

 
and so is 
 

𝑎,k# + 𝑏, − 𝑏,k#
𝑎,k/

∈ 0, 1  

 
We get that 𝑏,k# = 𝑎,k# + 𝑏, − 𝑎,k/ if the expression to the right is nonnegative and that 
𝑏,k# = 𝑎,k# + 𝑏, otherwise. In the latter case we directly get 𝑎,k/ > 𝑏,k# while in the former 
case we may introduce 𝑐 = 𝑎,k/ − 𝑎,k# to get that 𝑏,k# = 𝑎,k/ − 𝑐 + 𝑏, − 𝑎,k/ = 𝑏, − 𝑐 
so that 𝑏,k# < 𝑏, < 𝑎,k# < 𝑎,k/.     *** 
   Note in particular in the proof of the lemma that 𝑏,k# = 𝑎,k# + 𝑏, − 𝑎,k/ applies to cases 
where 𝑏,k# < 𝑏,. If instead 𝑏,k# > 𝑏, then applies 𝑏,k# = 𝑎,k# + 𝑏,. It thus follows that 
 

𝑏|k# = 𝑎|k# + 𝑏| − 𝑎|k/ 
𝑏|k/ = 𝑎|k/ + 𝑏|k# − 𝑎|k` = 𝑎|k/ + 𝑎|k# + 𝑏| − 𝑎|k/ − 𝑎|k` = 𝑎|k# + 𝑏| − 𝑎|k` 

𝑏|k` = 𝑎|k` + 𝑏|k/ − 𝑎|kY = 𝑎|k# + 𝑏| − 𝑎|kY 
… 

𝑏|k&-# = 𝑎|k&-# + 𝑏|k&-/ − 𝑎|k& = 𝑎|k# + 𝑏| − 𝑎|k& 
 
and finally (note that 𝑏|k& > 𝑏|k&-#) 
 

𝑏|k& = 𝑎|k& + 𝑏|k&-# = 𝑎|k# + 𝑏| − 𝑏|k&-# + 𝑏|k&-# = 𝑎|k# + 𝑏| 
 
so that 𝑏|k& − 𝑏| = 𝑎|k#, as desired. 


