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Abstract.  A unibike curve is a track that can be made by either a bicycle or a unicycle. More precisely,
the  end  of  a  unit  tangent  vector  at  any  point  on  a  unibike  curve  lies  on  the  curve  (so  the  bike’s  front
wheel always lies on the track made by the rear wheel). David Finn found such a curve in 2002, but  it
loops  around  itself  in  an  extremely  complicated  way  with  many  twists  and  self-intersections.  Starting

with  the  polar  square  root  curve  r = t / (2 π)  and  iterating  a  simple  construction  involving  a  differen-
tial  equation  apparently  leads  in  the  limit  to  a  unibike  curve  having  a  spiral  shape.  The  iteration  gets
each  curve  as  a  rear  track  of  its  predecessor.  Solving  hundreds  of  differential  equations  numerically
where each depends on the preceding one leads to error buildup, but with some care one can get a curve

having unibike error less than 10-7. The evidence is strong for the conjecture that the limit of the itera-
tion exists and is a unibike curve.

1.  The First Unibike

The  two  wheels  of  a  rolling  bicycle  generally  make  two  different  tracks  (Fig.  1).  Because  the  vertical
plane of the rear wheel always contains the point where the front wheel touches the ground (ignore  the
angled  front  fork  of  a  real  bicycle,  which  makes  this  only  approximately  true),  the  tangent  to  the  rear
wheel  path  at  time  t  strikes  the  front  wheel  path  at  the  point  where  the  front  wheel  is  at  time  t.  The
distance between the two wheels for all bicycles here is one unit. Looking at several tangents  generally
allows one to determine which track is the front wheel as well as the direction of travel. See [3, 9] for a
discussion of tracks where the direction cannot be determined.

Figure  1.   A  set  of  front  and  rear  tracks  made  by  a  bicycle.  The  unit  tangent  to  the  rear  curve  always  ends  on  the
front curve; this allows one to identify the rear track (blue) and the direction of travel (left to right).

A natural question is whether a bicycle can roll in such a way that the two wheels follow the same path.
Of  course,  this  happens  if  the  path  is  a  straight  line,  a  case  that  we  exclude.  Here  a  curve  is  called
smooth if it is continuously differentiable and the derivative is never (0, 0).

Definition.  Let f (t) parametrize a smooth curve C. The front track, Φ( f ) (t), is f (t) +
f ′(t)

 f ′(t)
. The unibike

error of f  at t, denoted E ( f ) (t), is Φ( f ) (t) - P, where P is the closest point to Φ ( f ) (t) lying on C (ties
won’t arise). A unibike curve is a curve that is not a straight line and has zero unibike error at all points;
i.e., each point Φ( f ) (t) lies on C.



The term unibike refers to the fact that the curve can be traced by either a unicycle or both wheels of  a
bicycle.  While  the  motion  might  go  from  –∞  to  a  finite  time,  we  generally  care  only  about  paths  that
start at a point and then have infinite length from that point, or perhaps are infinite in both directions. In
2002 David Finn ([2]; see also [5]) used a nonanalytic function to construct a unibike path (Fig. 2); the

red  curve  over  [0, 1]  that  starts  the  construction  is  f (t) = 4 -1/(t(1-t)),which  is  infinitely  flat  at  its  two
ends; the 4 is inessential but clarifies the curve. Starting with f , form Φ ( f ), Φ (Φ ( f )), and so on; the first
four iterations are shown at right in Figure 2. In [7, §1.2], we showed how Finn’s curve can be extended
infinitely in the reverse direction as well, giving a path g (t) that is defined on (-∞, ∞) and is such that
Φ (g) = g (Fig. 3). For more on Finn’s construction, including an animation, see [8].
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Figure 2.  Finn’s unibike path [2]. He started with the nonanalytic function at left. The repeated forward track of this
curve  gives  the  unibike  curve  at  right,  defined  on  [0, ∞).  The  arrows  show  six  bicycle  positions.  At  each  (n, 0),
n ∈ , the curve, viewed as a function of x, has infinitely many derivatives and they are all 0.
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Figure 3.  The green curve is part of a backward extension of Finn’s track, obtained using the differential  equation

in §4. Here the seed curve (red) is 24 -1/(t(1-t)). The fact that it can be extended to (-∞, 0) is proved in [7], though it
was  not  proved  that  the  backwards  curve  has  no  cusps.  Numerical  work  indicates  that  it  is  asymptotic  to  a  straight
line.

The goal of this paper is to present evidence for a spiral unibike curve that is infinite in one direction; it
has  no  self-intersections.  Figure  4  shows  an  example  from  §6  in  which  the  front  points  are  all  within

10-6  of  the  rear  track.  Notably,  this  curve  was  obtained  by  solving  only  11  differential  equations
numerically.
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Figure  4.   A  nearly  perfect  unibike  curve  that  is  a  weighted  average  of  K6  and  K12,  defined  in  §6.  The  front  track,

defined by the ends of the unit tangent vectors, is never more than 10-6 units from the rear track (blue).

Just  as  Finn’s  example  starts  with  a  seed  function—
1

t(1-t)—a  spiral  unibike  is  the  front-track  extension
of a seed curve. For the unibike shown in Figure 4, the seed curve is as in Figure 5. 
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Figure  5.   An  approximation  to  a  seed  curve  for  a  unibike.  The  polar  radius  is  shown  at  right.  That  graph  is
sufficient to generate the full half-infinite unibike spiral.

The  work  here  involves  complicated  symbolic  expressions  and  Mathematica  is  used  for  all  simplifica-
tions,  limits,  and  series  expansions,  as  well  as  for  the  intense  numerical  work.  An  Appendix  contains
the  code for some of the key steps.
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2.  A Spiral Pseudo-Unibike

A natural idea is to search for a unibike curve that is a spiral (a curve with increasing polar radius,  and

hence having no self-intersections). In [7] we observed that the polar square root r = θ  comes close.

Here we use the polar form F1(t) =
t

2 π
(cos t, sin t), starting at (1, 0). This function is not analytic as t

rises  to  ∞.  Figure  6  shows  the  curve  F1  as  the  rear  wheel  (blue)  and  the  corresponding  front  wheel
(yellow);  we  will  use  F0(t)  for  Φ(F1) (t),  but  the  parameter  in  F0  is  not  the  polar  angle.  Let  α (t)  be  the
proper angular parameter for F0(t); then α(t) = t + β(t) + 2 π k, where 0 ≤ β (t) < 2 π. The law of cosines
on the triangle ((0, 0), F1(t), F0(t)) yields

    β(t) = cos-1
t γ+ 2 π

γ(t+2 π) γ+2 2 π t 
= tan-1 2 t

1+
t

2 π
γ
,

where  γ = 1 + 4 t2  (Fig.  7);  because  γ > 2 t,  we  have  0 < β (t) < π / 4.  It  is  easily  seen  by  comparing
the  norm  of  F0  with  that  of  F1(t + 2 π + β(t))  and  F1(t + 4 π + β(t))  that  the  front  point  lies  between  the
two  mentioned  points  on  F1,  which  means  that  k = 1  and  α(t) = t + 2 π + β(t).  An  alternate  form  is

α(t) = t + 2 π +modtan-1F0(t)x, F0(t)y - t, 2 π,  where  the  2-argument  form  of  arctan  (atn2  in  FOR-

TRAN;  same  as  arg  for  complex  numbers)  is  used.  One  can  compute  the  inverse  function  α-1(t)  by

numerical root-finding and then the parametric curve F0α
-1(t) has the property that, for any t, the polar

angle of F0α
-1(t) is t.

F1(t) =
t

2 π
(cos t, sin t)
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Figure  6.   The  polar  square  root  spiral  F1(t)  (blue,  with  2 π ≤ t < ∞)  and  its  front  wheel  curve  F0(t)  (yellow).  The
small  error  (about  1 /73)  is  visible  at  the  start—the  end  of  the  first  tangent  vector  does  not  lie  on  the  blue  curve—
but approaches zero quadratically as t rises.
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Figure  7.   The  triangle  used  to  derive  β(t) = tan-1
2 t

1+ t/(2 π) γ
.  The  image  at  right  shows  F1(α(t)),  a  good

approximation to F0(t).

Our goal is to present strong evidence that a spiral unibike curve exists; more precisely, we seek a spiral
unibike curve that starts at (1, 0) and is close to the polar square root curve. Note that it is easy to get a
spiral  with  arbitrary  small  error:  just  use  the  polar  square  root  starting  from  a  large  value  t0;  the  error
from  that  point  on  will  be  nicely  small  and  as  t0  increases  the  curve’s  maximum  unibike  error
approaches  0.  But  this  process  of  deleting  initial  segments  leads  to  no  limiting  curve,  so  is  useless.

Similarly,  the  polar  curve  r = θ1/n  for  large  n  has  loops  that  are  so  close  together  that  the  maximum
unibike error approaches 0 as n  ∞; but again there is no limiting curve. The goal here is to construct a
sequence of smooth curves Fn(t) such that Fn(2 π) = (1, 0), Fn  has the same general shape as F1, and Fn
converges to a spiral with zero unibike error.

We use f ∼ g to mean that f  is asymptotic to g (the limit of the quotient is 1); when we have unproved
but computationally evident closeness relations, we use ≈. Let E1(t) = E(F1) (t) and more generally  use
En  for E(Fn), where Fn  is defined in §4. It is clear that E1(t)  0 as t  ∞ because the loops get  closer

together. This simplistic view leads easily to E1(t) ≤ π /8 t-1/2, but the true unibike error is much less.
The  end  of  the  arrow  in  Figure  6  starting  at  F1(2 π)  is  just  0.014  outside  the  blue  curve;  the  simple
bound gives 1 /4. A little farther along, the unibike error is invisible to the eye. Theorem 1 shows  that

E1(t) ∼ (π / 3) t-2.

This entire work requires a robust and fast method of computing the unibike error for a rear path f (t).
The generally best approach is the following. Let P be the nearest point on f (t) to a front track point Q;
then  the  tangent  to  f (t)  at  P  is  perpendicular  to  PQ  and  P  can  be  found  by  numerically  finding  s  such
that ( f (s) -Q) · f ′(s) = 0. However, it can happen that the derivative is difficult to compute (e.g., for H1
in §6), and it that case a numerical minimum-finding method can be used.

For the polar square root one can quickly get the unibike error even when t is 1010 or larger. The graph

of  E1(t)  is  in  Figure 8;  the  log–log  plot  indicates  that  log(E1(t)) - log
π

3
t-2  0,  which  indicates  that

E1(t) ∼
π

3
t-2. This is proved in §3; an improved error model is π

3
t-2 + π

8
t-5/2 - 11

15
π2 t-3.
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Figure 8.  The polar square root error (left) and in log–log form (right). The error is asymptotic to (π /3) t-2. 

3.  Error Bounds for the Polar Square Root

Let C be the polar square root spiral defined by F1(t), t ≥ 2 π. Any point on C provides an upper bound
on the unibike error E1(t): the minimum distance from F0(t) to C. The point F1(α(t)), the first intersec-
tion of the line from F0(t0) to the origin with C (Fig. 7), is a good choice and yields a very tight asymp-
totic upper bound. The proof of a lower bound uses a geometric argument based on a tangent line to C.

Notation.  Let R1(t) = F1 (t) =
t

2 π
 and 

    R0(t) = F0 (t) = 1 + t

2 π
+
1

γ

2 t

π
= 1 + t

2 π
+
2

γ
R1(t) .

Let  d((X, Y ), Z)  be  the  shortest  distance  from  point  Z  to  the  line  through  X  and  Y .  Let

λ(t) = π

3
t-2 + 1

2 2
π1/2 t-5/2 - 11

15
π2 t-3 - 11

6 2
π3/2 t-7/2.

Theorem  1  (a).   E1(t) ≤ R0(t) - R1(α(t)) = λ(t) +  103
70

π2 -
5

8
 π t-4 +Ot-9/2.  The  coefficient  of  t-4  is

about 43.66.

(b)  E1(t) is asymptotically greater than or equal to d[(F1(α(t)), F1(α(t)) + F1
′ (α(t))), F0(t)], which equals

λ(t) + 
103

70
π2 -

2

3
 π t-4 +Ot-9/2. The coefficient of t-4 is about 43.53.

(c)  E1(t) =
π

3
t-2 + 1

2 2
π1/2 t-5/2 - 11

15
π2 t-3 - 11

6 2
π3/2 t-7/2 +Ot-4.

Proof.  (a)  For t ≥ 2 π, let P = F0(t) and let δ (s) be the distance from P to F1(s). For any s, E1(t) ≤ δ(s).

Let Q = F1(α(t)); Q is on the line from (0, 0) to P (Fig. 6, right) and Q = α(t)

2 π
. We then have

    δ(α(t)) = P - Q = R0(t) -
s

2 π
=

1

2 π
1 + t

2 π
+
1

γ

2 t

π
- α(t) ,

and  a  series  expansion  around  t = ∞  using  the  formula  for  α (t)  gives  the  claimed  result.  Code  for  the
series is in the Appendix.

(b)   The  equality  is  the  4th-order  Taylor  polynomial  at  t = ∞  applied  to  the  standard  point-to-line
distance formula. For the inequality, let P = F0(t) and let L be the tangent line to , the curve defined by
F1,  at  Q = F1(α(t))  (Fig.  9,  left).  Then  for  any  point  W  on  the  near  side  of  L  (the  side  containing  the
origin), P -W  ≥ d(L, P).
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To finish, we show that the closest point on C to P cannot lie on the far side of L. It suffices to consider
points  F1(s),  where  t + 4 π ≤ s ≤ F1(α(t) + 2 π)  (red  in  Fig.  9).  The  lower  bound  is  justified  by  the  fact
that L  cannot strike C  at F1(s) where s ≤ t + 4 π. This is proved by the standard dot-product formula  to
show  that  F1(t + 4 π)  is  right  of  the  segment  from  Q  to  Q - F1

′ (α(t));  the  dot  product  is  asymptotic  to
–π / t,  and  so  is  asymptotically  negative,  as  desired  (code  for  this  symbolic  work  is  in  the  Appendix).
And the upper bound is justified because of the radial expansion of C: points beyond F1(t + 4 π) can be
shown  to  be  too  far  from  P  by  reflection  in  the  polar  line  through  P  and  using  the  main  case.  For  the
main case, we need only observe that the minimum distance in the domain is greater than the minimum
distance from P to the line segment joining F (α (t) + 2 π) and F (t + 4 π) (the green line in Fig. 9). That

distance, by the standard point-to-line distance formula, is asymptotic to π /2 t-1/2, vastly greater than

(π / 3) t-2, the bound from (a).
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Figure 9.  Here P = F0(t), Q = F1(α(t)), and L is tangent to C at Q. Any point on the origin’s side of L is farther from
P  than  Q  is.  The  tangent  passes  through  C  only  beyond  F1(t + 4 π).  The  shortest  distance  from  any  point  on  the
dashed part of C cannot be less than the shortest distance from P to the black line. Here t = 4 π. A close-up is at right.

(c).  This follows immediately from (a) and (b).  

The  approximations  of  Theorem  1  are  very  good.  When  t = 106 2 π,  a  million  loops  of  the  curve,  the

two bounds differ by about 10-28 and the true value is within about 10-29 of the lower bound. Figure 10

shows how the lower bound differs from the true error by about 65 t-9/2. The assertions of the theorem
appear to be true absolutely, not just asymptotically, but the various expressions are too complicated  to
lead to immediate proofs of absolute results.

1010π 1020π 1030π10 π
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Figure 10.  The difference between the polar square root and the lower bound of Theorem 1(b) is shown in blue. It is

modeled closely by 65 t-9/2, shown in yellow.
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4.  The Rear Track

Because  the  unibike  error  for  the  polar  square  root  is  so  small,  one  has  an  irresistible  urge  to  try  to
modify the curve so as to reduce the error. The hope is to find an iterative process to get curves Fn, each
starting at (1, 0), for which the unibike error approaches 0 and the curves approach a limiting curve, F∞.
Then F∞ will be a unibike curve and, one hopes, in the shape of a spiral. There might well be no closed
form  for  such  a  zero-error  spiral,  but  the  work  here  is  aimed  at  showing  that  it  is  likely  that  a  spiral
unibike curve exists.

To get the front track F0  from the rear track, just add the unit tangent vector. Figure 6  shows the front
curve for the polar square root. Iterating this process is not useful because a loop is lost at each step and
there is no limiting curve. But it is of interest to look at the unibike error for F0: it is worse than F1. For
example,  E1(α(2 π)),  the  error  for  the  polar  square  root  near  F0(2 π),  is  0.0043.  The  error  at  F0(2 π)  is
roughly double at 0.0095. This makes the reverse direction seem promising: consider F1  to be the front
wheel track and look at the corresponding rear wheel track in the hope that this will significantly reduce
the unibike error.

The  path  of  the  rear  wheel  corresponding  to  a  given  front  wheel  track  can  be  obtained  from  a  simple
differential equation. The equation was first derived by Dunbar et al [1] and is an example of a Riccati
equation  (see  [6,  chap.  18],  or  [7]).  Suppose  F (t)  is  the  path  of  the  front  wheel  and  we  seek  the  rear-
wheel path R (t). This task is the physically natural one because a bicyclist steers the front wheel and the
rear wheel follows according to geometry. This idea applies also to cars, trucks, and buses, where again
the steering is at the front and the rear follows. Because the rear wheel cannot steer, its velocity  vector
always  points  to  the  location  of  the  front  wheel.  We  can  decompose  the  velocity  vector  of  the  front
wheel  into  its  components  parallel  to  and  perpendicular  to  the  bike  (Fig.  11)  and  only  the  parallel
component  affects  the speed  of  the  rear  wheel.  Therefore the  speed  of  the  rear  wheel is  the  magnitude
of the parallel component, which is F′(t) · (F(t) - R(t)), yielding

(1)     R′(t) = F′(t) · (F(t) - R(t)) [F(t) - R(t)].

R(t)

F(t)F′(t)

R′(t)

Figure 11.  The instantaneous speed of the rear wheel is the magnitude of the component of F′(t), the front wheel’s
velocity vector, in the direction the rear wheel must travel.
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Figure  12.   Using  t0 = 13.3217…,  the  white  disk,  at  F1(t0),  is  at  unit  distance  from  (1, 0).  The  initial  condition  for
the  differential  equation  to  get  the  rear  track  F2  from  the  polar  square  root  F1  is  therefore  F2(t0) = (1, 0).  The  red
curve  is  the  differential  equation  solution  giving  F2,  and  the  red  arrow  confirms  that  the  bicycle’s  front  wheel  is  at
F1(t0) when the rear is at (1, 0).

We  wish  to  study  the  rear-wheel  track,  call  it  F2,  when  the  front  track  is  the  polar  square  root  F1.  But
this is not unique as it depends on the initial condition used. We want F2 to start at (1, 0), so we use the
initial condition F2(t0) = (1, 0) for an appropriate t0; this means that F1(t0) should be at distance exactly
1  from  (1, 0)  and  also,  to  preserve  the  spiral  shape,  t0  should  be  the  first  choice  greater  than  than  4 π
(see  Fig.  12).  This  value  is  easily  found  by  root-finding:  t0 ≈ 13.3217;  the  seed  for  this  can  be  4 π  or,
better, α(2 π), which is about 13.312. One cannot use the simpler condition F2(2 π) = (1, 0) as the initial
value  because  the  equation  R′(t) = F′(t) · (F(t) - R(t)) [F(t) - R(t)]  ties  the  front  and  rear  together  at  the
single  time  t.  If  h(t)  is  the  function  such  that  the  front  wheel  for  F2(t)  is  at  F1(h(t)),  then  we  have  no
information about h (t) except (assuming F2(2 π) = (1, 0)) that h(2 π) = t0.

We  can  numerically  solve  the  initial-value  problem  given  by  the  rear-track  differential  equation  and
F2(t0) = (1, 0) over [t0, tmax] to get F2, a curve that starts at (1, 0) and has F1 as its front track. Mathemati
ca’s numerical approach to differential equations gives the solution as an interpolating function over the
requested domain, using piecewise cubics with matching derivatives at the junctions (Hermite interpola-
tion).  Complete  code  to  get  the  rear  track  is  only  four  lines  (see  Appendix).  Figure  13  shows  the  two
tracks along with some unit tangent vectors. Note that F2  refers to the theoretical rear track defined for
2 π ≤ t < ∞,  but  we  will  use  it  also  for  a  numerical  approximation  to  the  theoretical  function.  We  use
E2(t) for the unibike error of F2 at t.

F2(t)

F1(t)

-1 0 1

-1

0

1

Figure  13.   The  polar  square  root  F1  is  in  yellow,  with  its  rear  track  in  blue  and  some  arrows  showing  bicycle
positions. Because F1  is almost a unibike track, F1  and F2  almost coincide. The error E2(2 π) is barely visible as the
white circle misses the blue curve by less than 0.006.
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It’s  always  good  practice  to  check  the  results  of  an  approximate  numerical  solution.  That  can  mean
several  things:  (1)  the  difference  between  the  left  and  right  sides  of  the  equation;  (2)  the  difference
between  the  computed  solution  and  the  true  solution,  or  (3)  the  minimal  distance  between  the  front
curve determined by the solution and the front curve used in the differential equation. We cannot get  a
symbolic solution, but we can compute a very high-precision solution and treat that as if it were the true
solution.  Figure  14  shows  the  errors  in  a  test  case  up  to  10 π;  the  errors  are  about  what  one  would
expect  given  the  default  working  precision  (16  digits)  and  precision  goal  (6  digits).  The  error  here
decreases when the working precision is increased, as is necessary when we iterate the process, but  the
computation time increases. A working precision of 22 and precision goal of 15 suffices for the computa
tions  in  this  project.  For  a  domain  out  to  650 π,  this  leads  to  an  interpolating  function  for  F2  that  has
more than 350,000 interpolating points.

5 π 6 π 7 π 8 π 9 π 10 π

10-6

10-5

10-7

10-8

Figure 14.  Here F2 is the rear track obtained from F1 using machine precision, 16 digits. The red curve indicates the
difference  between  the  two  sides  of  the  differential  equation  that  defines  F2  from  F1.  The  blue  points  give  the
minimum distance from Φ(F2) (t) to the curve F1. The green values are the difference between the computed solution
and a proxy for the true solution computed with 37 digits of working precision.

For  several  reasons  (the  error  computation;  iterating  the  process)  it  is  important  to  reparametrize  the
solution  to  the  differential  equation  so  that  the  parameter  is  polar  angle;  that  is,  the  parameter  is  the
angle made by the point with (0, 0) and the x-axis, increased by the correct integer multiple of 2 π. This
is a little delicate to program in general because of several numerical issues that can arise. From now on
we  consider  F2  (and  all  Fn)  to  be  so  parametrized.  Figure  15  compares  the  polar  radii  of  F1  and  the
reparametrized F2.

F1(t)

F2(t)

2 π 3 π 4 π
1

1.5

t

2 π
- F2(t)

2 π 20 π 40 π 60 π 80 π

10-2

10-3

10-4

10-5

Figure 15.  Left: The norms of F1  and F2  after reparametrization. Right: A log plot of the radial difference between
F1  and F2. They both start at (1, 0) which explains the spike near 2 π as the difference can only rise from 0 before it
starts to decrease back to 0.

Figure 16 is a log–log plot comparing the unibike error for F2  with that for F1. Theorem 1 proves that
the  asymptotic  slope  of  the  log–log  form  of  E1(t)  is  -2.  The  asymptotic  behavior  is  apparently
unchanged when we move to F2, but the overall error has decreased a lot. A key point is that the  error
E2  is  decreasing,  so  the  largest  unibike  error  occurs  at  t = 2 π.  Here  we  have  E1(2 π) = 0.0137…  and
E2(2 π) = 0.0058…; the maximum unibike error has been halved! In the next section we will see that the
error reduction continues as the process is iterated, following a wonderfully simple pattern.
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E1(t)

E2(t)

2 π 4 π 8 π 16 π 32 π 64 π 128 π 256 π

10-2

10-3

10-4

10-5

10-6

Figure 16.  A logarithmic view of the unibike error for F1 and F2.

5.  A Spiral Unibike

Because  E2  is  less  than  E1,  one  can  hope  that  repeating  the  process  will  yield  a  sequence  Fn  such  that
the corresponding unibike errors En  will continually decrease. This would not mean they go to zero,  so
the  hope  is  to  find  a  definitive  pattern  in  the  errors  that  implies  a  limit  of  0.  There  is  indeed  such  a
pattern!  In  §6  we  will  present  a  heuristic  argument  to  support  the  experimental  result  that

En(2 π) ≈ 9 π3/2
-1
n-3/2. Because computations indicate that En(t) is decreasing in t, and further computa-

tions  and  another  heuristic  argument  indicate  that  the  sequence  Fn  approaches  a  limiting  function  F∞,
this  means  that  there  is  almost  certainly  a  spiral  unibike  curve.  In  short,  two  miracles  occur  when  we
study the rear tracks: the unibike error decreases in a patterned way, and the tracks converge to a limit-
ing track, again following a simple pattern.

With F256  as the target, we must start with F2  on a very large domain (F1  is defined for all t ≥ 0), as a
loop is lost whenever we get a new rear track. Starting with F2  defined to t = 650 π, we can iterate  the
rear track computation of §4 (using a working precision of 22 decimal digits) and reparametrize at each
step,  to  get  Fn  for  2 ≤ n ≤ 256,  and  with  F256  defined  up  to  133 π.  This  takes  seven  hours.  Figure  17

shows F256, along with a closeup view of its unibike error at 2 π, which is under 5 ·10-6. We use En(t)
for E(Fn) (t) and Rn(t) for Fn(t).

F256(t)

F255(t)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

P

10-5

Figure  17.   The  track  for  F256  (blue)  and  its  front  wheel  Φ(F256),  which  equals  F255.  At  normal  scale  (left),  F256
appears  to  be  a  perfect  spiral  unibike:  the  maximum  error  is  under  10-5.  A  zoom  to  the  initial  front  point
P = Φ(F256) (2 π) is at right; the white point is where F256 is closest to P.
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A  log–log  plot  of  the  error  of  Fn  at  2 π  (yellow  dots  in  Fig.  18)  shows  the  first  miracle.  The  error
decreases in a definite pattern as the essentially linear plot indicates a power rule. A fit gives the correct

power  as  n-3/2;  for  example,  E300(2 π) = 3.72…·10-6  while  1  9 (π 256)3/2 = 3.84…·10-6.  A  subtle

analysis in §6 gives evidence for En(2 π) ∼
1

9 π3/2
n-3/2. If, as expected, the error monotonicity for rising t

holds, this asymptotic result implies that limn∞En(t) = 0 for any t. Figure 19 shows the solid evidence
for  decreasing  En(t)  as  t  rises,  and  it  appears  that  each  En(t) ∼ E1(t).  The  error  model  indicates  that

E736 < 10
-6,  but  computing  such  a  distant  Fn  is  not  possible.  We  will  see  in  §6  how  to  get  such  small

error using only 11 steps of the rear track construction.

1

9 π32
n-32

1 2 4 8 16 32 64 128 256 736

10-2

10-3

10-4

10-5

10-6

Figure  18.   The  dots  mark  En(2 π)  up  to  n = 300.  Computation  indicates  that  each  E(Fn) (t)  decreases  as  t  rises,  so

these values represent the maximum error of Fn. The straight line is the log–log plot of 
1

9 π3/2
n-3/2, which models the

asymptotic behavior of En(2 π).

En(t)
n=1

n=2

n=4

n=8

n=16

n=32

n=64

n=128

n=256

2 π 10 π 25 π 50 π

10-2

10-3

10-4

10-5

10-6

Figure 19.  The unibike error for Fn over [2 π, 50 π]. The errors all appear to decrease as t increases.
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Figure 20 presents evidence of convergence by checking that for each t, Rn-1(t) - Rn(t) forms a Cauchy
sequence.  The  right  side  of  the  figure  compares  the  Cauchy  differences  to  En(t - 2 π),  and  they  appear
almost  identical.  If  their  difference  approaches  0,  that  would  mean  that  if  one  goes  to  0,  so  does  the
other;  this  indicates  that  the  miracle  of  convergence  is  equivalent  to  the  miracle  of  vanishing  unibike
error.  Figure  21  indicates  that  for  each  t,  the  difference  (Rn-1(t) - Rn(t)) - En(t - 2 π)  does  indeed
approach  0.  There  is  a  simple  reason  for  this  relationship.  Figure  22  shows  that  μ,  the  closest  point  to
Φ(Fn) (t), is close to a point on Fn  with the same polar angle—call it ζ (t)—as Φ(Fn) (t). While we have
no way to quantify the angle ζ (t), considering large values of t  and the spiral nature of the curve indi-
cates  that  limt∞ (ζ(t) - (t + 2 π)) = 0.  When  n = 1,  ζ(t) = α(t)  and  the  limit  is  a  simple  consequence  of

α (t) = t + 2 π +Ot-1/2. All this provides a heuristic explanation for

(1)     limn∞ Rn-1(t + 2 π) - Rn(t + 2 π) - En(t) = 0,

the  same  as  the  observed  relationship.  Example:  R127(40 π) - R128(40 π)  is  larger  than  E128(38 π)  by

1.5 ·10-8. This relation plays an important role in §6 as it leads to a simple formula for a track that has
much smaller unibike error than the polar square root.

F
1 (t) - F

2 (t)

F255(t) - F256(t)

2 π 5 π 10 π 25 π 50 π

10-2

10-3

10-4

10-5

10-6

4 π 8 π 16 π 32 π 50 π

10-2

10-3

10-4

10-5

10-6

Figure  20.    Left:   Rn-1(t) - Rn(t)  for  n = 2, 4, 8, 16, 32, 64, 128, 256.  These  apparently  converge  to  0  following  a
distinct  pattern.  The  plots  indicate  that  (Fn)  is  uniformly  Cauchy,  which  implies  uniform  convergence  to  a  limit
function.   Right:   The  left  image,  with  the  errors  En(t - 2 π)  shown  in  blue  (so  t  starts  at  4 π).  This  illustrates  the
relation (1).

R
n-1 (10 π) -R

n (10 π) -E
n-1 (8 π]

4 8 16 32 64

10-4

10-5

10-6

10-7

Figure 21.  The difference Rn-1(t) - Rn(t) - En(t - 2 π) approaches 0 as n rises. Here t is 10 π, 25 π, and 50 π.
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0

0.5

1

μ

Fn-1(ζ(t))

Fn(ζ(t))

R n
-1
(ζ
(t)
) -
R n
(ζ
(t)
)

En
(t)

1.056 1.06 1.064

0.996

0.994

0.998

Figure 22.   Here n = 2 and t = 2 π but the story applies to any n and t. Left:  Fn  in blue and Fn-1  in red. The front
wheel point is on Fn-1.  Right:  Let ζ (t) be such that Φ(Fn) (t) = Fn-1(ζ(t)); it appears that ζ(t) - (t + 2 π) approaches 0.
The  point  μ  is  the  closest  point  on  Fn  to  Φ(Fn) (t)  and  so  En(t)  is  the  length  of  the  line  segment  containing  μ.  And
Rn(ζ(t)) - Rn-1(ζ(t)) is the polar segment connecting the black points.

Figure 23 shows F256, an approximation to the limit F∞  that hardly differs from the limit and so shows
what a spiral unibike track looks like. The radial plot at right contains all the information for the  track
because it allows one to get the seed curve, and then front track iteration gives the entire curve.  Figure
24  compares  F1(t)  with  F256(t);  there  is  a  visible  difference  for  small  t,  but  after  a  small  initial
segment, the two functions coincide at human scale.

0 1-5 5

0

-5

5

R256
(t)

2 π 3 π 4 π

1

1.25

1.5

Figure 23.  Left: F256, which has extremely small unibike error. Right: The plot of F256(t) up to 4.5 π. The small
domain  is  because,  for  the  limiting  curve  that  domain  is  enough  to  generate  the  full  half-infinite  spiral,  which  is
presumably a unibike: just repeatedly form the front track.

2 π2 π 4 π 6 π

1

1.5

1.25

1.75

2 π 10 π 25 π 50 π

2

3

4

5

Figure 24.  The plots compare R256(t) (red) with R1(t), which is t / (2 π) ; there is some difference at the start,  but
overall the functions barely differ.
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We can summarize these experiments in a conjecture. Perhaps this can be proved by a careful  analysis
of the differential equation that gives the rear track.

Conjecture  1.   Let  (Fn)n≥1  be  the  sequence  defined  as  follows.  Start  with  F1(t) = t / (2 π)  and  define
Fn to be the rear track for the front track Fn-1 with the initial value Fn(τ) = (1, 0) where Fn-1(τ) has unit
distance from (1, 0) and is on the second loop of Fn-1. Reparametrize so that t is the polar angle of Fn(t).

(a)  The sequence of functions Fn(t) converges uniformly as n  ∞ to an infinitely differentiable  func-
tion F∞(t) defined for t ≥ 2 π.

(b)  F∞ is a unibike curve: the unibike error at every point F∞(t) is 0.

(c)  The curve defined by F∞ is a spiral: F∞(t) has polar angle t and F∞(t) is monotonically increasing
as t rises.

One wonders whether the spiral nature of the curves would allow the rear track differential equation  to
be set up in just one equation, for r′(t). We do not see how to do that. Also one wonders whether extrapo-
lation  can  work  from  the  sequence  of  radial  values  for  fixed  t  to  predict  the  limiting  radial  value.  We
have had no success in that direction.

6.  The Pochhammer Connection

Examining how the error changes as n rises leads to the surprising relationship

(2)     En(t) ≈ En-1(t + 2 π) 1 +
π

t+2 π
,

relating  the  error  at  t  to  the  previous  error  at  t + 2 π.  No  reason  for  the  multiplicative  factor  is  evident,
but the fit is very good, including the π in the numerator. Figure 25 shows some data; at right, the data
has been replaced by a model fit to eliminate the noise due to interpolation.

2 π 20 π 40 π 80 π

1.1

1.2

2 π 20 π 40 π 80 π

1.1

1.2

Figure 25.  The ratio 
En(t)

En-1(t+2 π)
 compared to 1 +

π

t+2 π
 (blue), for n = 2 (red) and n = 20 (yellow). The smooth plots at

right replace the noisy data for the ratios with least-squares fits to the model 1 +
a

t+b
.

Theorem  1  proves  E1(t) ∼ (π / 3) t-2,  so  (2)  gives  E2(t) ≈
π

3
(t + 2 π)-2 1 + π

t+2 π
  and  we  can  repeatedly

use (2) to get a finite product En
*(t) that approximates En(t). This product can be concisely expressed as

(3)     En(t) ≈ En
*(t) = π

3
(2 π (n - 1) + t)-2


t+3 π

2 π

n-1


t+2 π

2 π

n-1

,

where  (a)n  is  the  Pochhammer  function  a (a + 1) · · · (a + n - 1).  An  example:  E64(50 π) = 1.3068 ·10
-5

and  E64
* (50 π) = 1.3036 ·10-5.  A  proof  of  En(t) ∼ En

*(t)  would  imply  that  the  unibike  error  goes  to  0
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 proof  imply  goes
uniformly, because En*(t) decreases with t (a consequence of the product definition of (a)n) and

    En
*(2 π) = 1

9 π3/2 n2 n!
Γ
3

2
+ n = (2 n+1)!!

9 π n2 n! 2 n+1
∼

1

9 π3/2
n-3/2.

If one wants to know only that the error goes to 0 (assuming (2) is asymptotically true), then this works: 

    En
*(2 π) = 1

9 π3/2 n2 n!
Γ
3

2
+ n ≤ 1

9 π3/2
(n+1)!

n2 n!
=

1

9 π3/2
n+1

n2
≤
1

n
.

R1

R∞ (approx)

2 π 2.5 π
1

1.04

1.08

Figure 26.  The differences Rn - Rn+1, when subtracted from R1, give R∞.
 

For each t, the polar radius Rn(t) appears to decrease to a limit R∞(t) (see Fig. 26), so we can use (1) and
(3) to approximate R∞ with a hypergeometric function.

    R∞(t) = R1(t) - (R1(t) - R2(t)) - (R2(t) - R3(t)) -… ≈
t

2 π
- (E2(t - 2 π) + E3(t - 2 π) +…) (by (1))

≈
t

2 π
- (E2

*(t - 2 π) + E3
*(t - 2 π) +…) (by (3))

=
t

2 π
-

π

3 t3
(t + π) 4F31,

t

2 π
, t

2 π
, t

2 π
+
3

2
; 1 + t

2 π
, 1 + t

2 π
, 1 + t

2 π
; 1,

where 4F3  is a generalized hypergeometric function pFq. Because 4F3  is defined as a sum of Pochham-
mer values, we are not really getting anything new, but this gives us a nice unibike approximation using
no  differential  equations.  Define

H1(t) = 
t

2 π
-

π

3 t3
(t + π) 4F31,

t

2 π
, t

2 π
, t

2 π
+
3

2
; 1 + t

2 π
, 1 + t

2 π
, 1 + t

2 π
; 1 (cos t, sin t).  It  appears

that  the  subtracted  term,  t

2 π
- H1(t),  is  

1

3
t-1 + π

3
t-2 +Ot-3,  which  means  that  H1(t) ∼ F1(t),  but

for small t they differ by a lot (e.g., H1(2 π) = (0.91…, 0) compared to (1, 0) for F1).

It is possible, but tedious, to compute rear tracks starting with H1, as was done in §5 starting from F1.
The difficulty is the evaluation of both H1(t) and H1

′ (t). One can spend several hours getting an interpolat
ing  function  based  on  a  fine  mesh  of  values  of  H1  and  then  using  the  interpolant  to  generate  the  rear

track sequence. But a niftier approach is to use the observation above in the form H1(t) ≈
t

2 π
-

1

3 t
.

There has been much research into the asymptotics of hypergeometric functions, but this result  appears
to have not been proved. Numerical computations give solid support, so we can conjecture as  follows,
where the form is simplified by replacing t by 2 π t and eliminating irrelevant coefficients. 

Conjecture 2.  4F31, t, t, t +
3

2
; t + 1, t + 1, t + 1; 1 ∼ 2 t2. 

This  conjectured  asymptote  to  H1  leads  to  an  adjustment  of  the  polar  square  root  to

G1(t) = 
t

2 π
-
1

3
t-1 (cos t, sin t), a nicely simple formula that is a significant improvement over F1 as

a  unibike.  And  G1  does  define  a  spiral:  the  polar  radius  increases  with  t.  In  Theorem  2  we  will  prove

that  the  unibike  error  for  G1  is  much  smaller  than  (π /3) t-2,  the  asymptotic  error  for  F1.  Figure  27
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 asymptotic  Figure

compares the unibike errors for F1 and G1, and the correct model for E(G1) is evidently about 0.63 t-5/2;
the coefficient appears to be π /5, but it might not be exactly this. The graph also shows the error for K1,

which  uses  one  more  term:  K1 =
t

2 π
-
1

3
t-1 - π

3
t-2.  The  maximum  unibike  errors  for  H1,  G1,  and

K1  are  1 /531,  1 /126,  and  1 /523,  respectively,  so  K1  is  a  fine  proxy  for  H1.  The  error  for  H1  is  also
shown in Figure 27; it is very different from E(K1).

(π/5) t -5/2
E(G

1 )(t)

E(F
1 )(t)

E(K
1 )(t)

2 π 5 π 10 π 50 π 100 π 500 π

10-2

10-3

10-4

10-5

10-6

10-7

10-8

Figure  27.   Log–log  plots  of  the  unibike  error  for  F1  (blue)  and  G1  (red),  with  a  fitting  curve  for  E(G1)  shown  in
green;  the  coefficient  appears  to  be  close  to  π /5.  The  dashed  line  is  the  bound  on  the  proof  of  Theorem  2,  with
coefficient  about  5.28,  compared  to  0.628  in  the  better  fit  (green).  The  purple  graph  shows  the  error  for  K1,  which
slightly improves on G1 (the maximum errors for these two curves are 1 /523 vs. 1 / 126). The two dips to 0 indicate
places  where  the  front  curve  for  K1  intersects  K1.  The  black  graph  is  the  error  for  H1;  a  front–rear  crossing  occurs
near t = 56 π.

Theorem 2.  The error E(G1) (t) is asymptotically bounded by 6 t-5/2.

Proof.   Let  G0 = Φ(G1),  the  front  track.  Any  point  G1(s)  provides  an  upper  bound  on  the  error:  the

minimum distance from G0(t) to G1(s). Let s = α(t) + 2

3
π t-2, where α (t) is as in §2. The quadratic term

in s was found by numerical work using the location of the true closest point, and identifying the con-
stant 2 π /3 in a least-squares fit to the s - α (t). So now it remains only to find the asymptotic value  of
G0(t) -G1(s). This is a complicated expression but we can get the desired result with some  computer
assistance when we use the squared distance δ = (G0(t) -G1(s)) · (G0(t) -G1(s)). Then Mathematica gets

the result via     limt∞ δ t
5 = (π / 72) 9 + 64 π2 < 62.  Code for this last step is in the Appendix.  

Knowing  that  G1  is  an  improvement  over  F1,  we  can  hope  for  nicely  reduced  error  when  we  compute
the  sequence  of  rear  tracks  from  G1  as  in  §5.  The  results  are  very  good.  Each  E(Gn) (t)  appears  to  be
monotonically  decreasing.  And  as  n  increases  the  error  decreases  similarly  to  E(Fn),  but  with  a  much

smaller coefficient (Fig. 28). For E(Fn) the maximum error is about 0.02 n-3/2 while E(Gn) is asymptotic

to about 0.00033 n-3/2. The unibike error for G72  is under 10-6, a bound not attainable by  computation
for the polar square root, where F736  would be required. Figure 28 includes the error E(Kn) (2 π), where
Kn  is the sequence of rear tracks starting from K1. For some small values of n the error at 2 π is not the
maximum  error  (e.g.,  K26),  but  eventually  the  normal  pattern  of  decreasing  error  returns.  So  K300  is

quite  good,  with  maximum  error  under  7 ·10-8  .  The  steep  drop  in  Figure  28  at  n = 26  is  because  of  a
crossing  of  the  front  and  rear  tracks  that  occurs  near  2 π,  which  leads  to  near-zero  error  at  2 π.  Such
crossings exist already for K1  (two are evident in Fig. 27), but they move left as n rises and eventually
disappear.  Figure  29  shows  the  data,  which  is  very  noisy  but  does  support  the  hypothesis  the  error  for
the true K128 path only decreases as t rises.
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0.00033 n -3/2

E(F
n )(2 π) ∼ 0.02 n -3/2E(G

n )(2 π)

E(Kn)(2 π)

1 5 10 26 72 240
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10-3

10-4

10-5

10-6

10-7

10-8

Figure  28.   The  maximum  unibike  error  for  Gn  (red)  is  apparently  asymptotic  to  about  
1

3000
n-3/2;  this  is  similar  to

the behavior of E(Fn), but with a much smaller constant. The maximum error of Kn  (the orange graph) is quite a bit
smaller than max(E(Gn)), but the asymptotic behavior seems unchanged.

2 π 10 π 25 π 50 π 100 π

10-7

10-8

Figure 29.  The error for K128  is very noisy, but it appears that the ideal version of this function is decreasing  from
its initial value at t = 2 π.

The various improvements here are quite large. The maximum polar square root unibike error is about 1
part in 73; the same for K320 is less than 1 part in 19,000,000.

A  final  idea  is  to  consider  a  linear  combinations  of  Sn  and  S2 n,  where  S  is  any  of  F,  G,  or  K.  This  is
inspired  by  the  classic  idea  used  by  Huyghens  to  improve  Archimedes’s  approximation  to  π;  more
generally it is known as Romberg’s method or Richardson extrapolation. Our setup is not obviously one
where  the  method  applies,  but  it  is  easy  enough  to  try  various  weighted  averages,  and  indeed,  we  get
significant  improvement.  With  σ = 6.83,  consider  K12

* = (σK12 -K6) / (σ - 1).  Then  E(K12
* )  is  bounded

by 10-6  (Fig. 30) so this breaks the one-part-in-a-million goal using only 11 differential equation solu-
tions. This is the spiral shown in Figure 4.

2 π 10 π 25 π 50 π 150 π

10-6

10-7

10-8

Figure  30.   The  unibike  error  for  K12
*

 is  bounded  by  10-6,  thus  achieving  one-part-in-a-million  error  with  only  11
differential equations.

|   18



7.  Conclusion

Finn’s  example  is  very  complicated  and  it  is  natural  to  think  that  there  can  be  a  unibike  curve  in  the
shape of a simple spiral. The very simple polar square root curve has maximum unibike error of 1  part
in  73.  Then  the  rear  track  iteration  leads  to  a  curve  with  error  that  is  at  most  1  part  in  268,000.  An
adjustment  to  the  polar  square  root  gets  to  1  part  in  14  million,  and  a  final  enhancement  leads  to  the
spiral  curve K320  with  unibike  error  less  than  one  part  in  19  million.  There  is  a  pattern  to  the  error
decrease,  so  all  these  methods  provide  evidence  that  there  is  a  limiting  spiral  that  is  a  perfect  unibike.
Perhaps  one  can  carefully  analyze  the  differential  equation  to  discover  a  rigorous  explanation  of  why
moving  to  the  rear  track  decreases  the  error  as  the  computations  indicate,  and  so  get  a  rigorous  proof
that the limiting curve exists and is a perfect spiral unibike.

The author is grateful to Bob Bixler, Michael Elgersma, Antonín Slavík, and Michael Trott for  helpful
comments on the unibike problem.
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Appendix of Mathematica Code

Code for asymptotics in proof of Theorem 1(a)

F[t_] := t/(2 π) { Cos[t], Sin[t]}; Fder = Normalize[D[F[t], t]];

FFront[t_] := F[t] + Fder; α[t_] := 2 π + t + ArcTan
2 t

1 +
t 1+4 t2

2 π

;

Series[Simplify[Norm[FFront[t]] - Norm[F[α[t]]], t ≥ 2 π], {t, ∞, 4}]

π

3 t2
+
1

2

π

2

1

t

5/2

-
11 π2

15 t3
-

11 π3/2 
1
t

7/2

6 2
+

π -175 + 412 π2

280 t4
+ O

1

t

9/2

Code for proof of Theorem 1(b).

left[{A_, B_}, C_] := (A - C).({1, -1} Reverse[B - C]); Q = F[α[t]];

 
t∞

TrigExpand[t left[{Q, Q - F′
[α[t]]}, F[t + 4 π]]],

Nt left[{Q, Q - F′
[α[t]]}, F[t + 4 π]] /. t  1020 π, 20

{-π, -3.1415926534955123342}

Complete code to generate the rear track for the polar square root

F[t_] := t/(2 π) {Cos[t], Sin[t]}; G[t_] := {Gx[t], Gy[t]}; b = F[t] - G[t];

t0 = SolveValues[EuclideanDistance[F[t], {1, 0}]  1 && 4 π < t < 5 π, t]〚1〛;
GDE = NDSolveValue[{G′

[t]  (F′
[t].b) b, G[t0]  {1, 0}}, G[t], {t, t0, 60 π}];

ParametricPlot[{F[t], GDE}, {t, t0, 10 π},
PlotStyle  {{Thickness[0.025], Blue}, {Medium, Red}}]

-2 -1 1 2

-2

-1

1

2

Code for the limit in the proof of Theorem 2

α[t_] := 2 π + t + ArcTan
4 π t

2 π + 2 t 1 + 4 t2
;

G[t_] :=
t

2 π

-
1

3 t
{Cos[t], Sin[t]};

Gd = Simplify[Normalize[∂t G[t]], t > 2 π];

δ = TrigExpandSimplifyG[t] + Gd - Gα[t] + (2/3) π t-2
;

Together 
t∞

δ.δ t5 

1

6

1

2
π 9 + 64 π

2
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