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Mathematics has always played a strong role in bridge design and construc-
tion, but there is always the possibility of a radical innovation. A new bridge 
in London is an example as it uses classic geometry in a very surprising, 
even shocking way. 

1.  Introduction

Cody Dock, near where the River Lea meets the Thames in East London, is 
being brought back into use after years of dereliction (see Fig. 1). Thanks to 

designer Thomas-Randall Page, working with a large team including 

structural engineer Alfred Jacquemot of Price & Myers, a remarkable new
bridge over the waterway illustrates a mathematical principle that has never 
before been used in large-scale construction.

In 1849, at the age of 18, James Clerk Maxwell [3, p. 537] discovered that a 
straight line will roll smoothly on an inverted catenary. The idea was 
extended in 1960 by G. Robison [7], who showed that a square will roll 
smoothly on a series of truncated and linked catenaries. Stan Wagon, in 

1997, constructed a full-sized tricycle to illustrate the idea of a smoothly 

rolling square (Fig. 2). That whimsical construction received a lot of 
publicity. Randall-Page designed the new Cody Dock bridge as a platform 

attached to two large squares; the structure can be smoothly rolled to an 

upside-down position that would allow boats to pass beneath it (Fig. 3). He 
and Jacquemot then oversaw the construction so that the inversion of the 
26,400-pound structure can be carried out entirely by hand (Fig. 4, 5). There 
were many details to be worked out to ensure the new idea would work; for 



 many
example, a large amount of concrete and steel was placed inside the two 

upper edges to counterbalance the weight of the bridge deck. Not only does 
it work, but the bridge won the 2023 Bridges Design Award [14].

Figure 1.  Cody Dock and the bridge are located just east of London.

Figure 2.  Stan Wagon on his square-wheel bike (it is really a tricycle).

The bridge design relies on two 19th century ideas. There was the aforemen-
tioned geometrical result of Maxwell. But another factor was the use of a 
pre-industrial ethic. Before steam engines and electrical power, all moving 

things required muscle, and thus balanced systems were used, often with 

counterweights to minimize the energy needed. This history motivated 

Randall-Page to come up with a balanced bridge that can be moved by hand. 
Another motivation for the square was that space was limited and so a 
design was needed that did not occupy land on either bank. This led to a 
design that utilizes two catenary tracks along the channel, with no support-
ing structures on the banks.
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Figure 3.  A sketch of the bridge with the two winches shown on the 
near side. Note the rounded corners on the squares and the rounded 

sections of the track where the catenaries meet. (Artwork by Thomas 
Randall-Page.)

Figure 4.  The rolling square bridge at Cody Dock in East London, 
England. (Photo by G. G. Archard.)
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Figure 5.  The rolling square bridge in action.  (Photo by Jim 

Stephenson.)

There are some surprising subtleties in the translation of a relatively simple 
geometrical idea to a large-scale construction. To ensure that the squares 
could not slide down the track, a system of gears and pins is used. These 
force the corners of the squares to be rounded, and that means the pure 
linked catenaries will not work as the road. One must work out the proper 
road for a circular arc, and that involves elliptic integrals. The details are 
discussed in §6. 

Several videos have been produced showing the bridge in action and the 
details of its fabrication; see [4, 5, 6].

2. An Elegant Equation: x ′(θ) = r (θ)

The basic equation linking the shape of a road that is appropriate for a non-
round wheel is surprisingly simple. The goal is to have the wheel roll 
smoothly: that means that it should roll along the road so that its center of 
mass moves neither up nor down. Suppose a wheel is given in polar coordi-
nates as r = r(θ), with the origin viewed as the center of mass, and the 
corresponding road is given parametrically as (x (θ), y (θ)), the point on the 
road that is touched by the wheel point defined by θ. See Figure 6 and note 
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 by  point  by  Figure
that x (-π /2) = 0 and y(θ) is negative. We assume throughout that friction 

prevents any sliding.

(x(θ), y(θ))

r = r (θ)

0 4 8
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0

Figure 6.  The relationship between a wheel and the corresponding road. 
The lengths of the black lines are equal; the length of the road between 

the two dots is the same as the length of the wheel between the two dots.

With this setup θ ↦ (x(θ), y(θ)) parametrizes the desired road. We have the 
radius condition: y(θ) = -r(θ). Matching the arc length of the road to the 
relevant part of the wheel’s perimeter (using the polar coordinate arc length 

formula) leads to: ∫-π/2
θ

x′(t)2 + y′(t)2 t = ∫-π/2
θ

r(α)2 + r′(α)2 α. Differenti-

ation with respect to θ and squaring gives x′(θ)2 + y′(θ)2 = r(θ)2 + r′(θ)2. The 
radius condition implies y′(θ) = -r′(θ) and substituting into the previous 

equality gives x′(θ)2 = r(θ)2, and consequently x′(θ) = r(θ). This can be solved 

by the definite integral x(θ) = ∫-π/2
θ

r(t) t. The result can sometimes be 

inverted to get θ (x), the polar angle when the touching point is at x. When 

symbolic integration fails it is efficient to numerically solve the initial-value 
problem x′(θ) = r(θ) and x(-π /2) = 0 to get a solution. For more on these 
formulas, and variants in the case that the wheel is given in a different form, 
or the case that the road is given and one seeks the appropriate wheel, see 
[2, 7, 9, 10, 12]; for a blog post with many videos and live demonstrations 
see [11].

3. The Catenary Road for a Straight Line

If r (θ) = 1, the wheel is a circle, x(θ) = θ +
π

2
, and the road is the straight line 

y = -1. Maxwell [3] considered the case of a wheel that is the infinite 
straight line x = -1 with its center of mass taken to be (0, 0). He wrote:

     "The straight line whose equation is r = a sec θ, rolled on a catenary 

whose parameter is a, traces a line whose distance from the vertex is a."

His “traces” refers to the locus of the origin, which one imagines to be 
attached to the line. A horizontal line has the polar form r = -csc θ (where 
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 polar  (where
-π < θ < 0) and the road can be obtained by the integration 

x(θ) = ∫-π/2
θ

-csc t t = ln-cot
θ

2
. The parametric form of the road can be 

turned into the more familiar y = f (x) as follows. The integration formula 

gives θ = -2 tan-1(-x) and so the road is given by csc-2 tan-1(-x), which 

is exactly -cosh x, the formula for an inverted catenary. Figure 7 shows the 
rolling line. Maxwell never considered truncating the line at a point where 
he could then make 90° left turns to get a square wheel. It took over a 
century for someone to have that idea.
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Figure 7.  A line rolling along a catenary.

4.  A Square Wheel

In 1960, Robison [7] rediscovered Maxwell’s result and carried it farther to 

get a square wheel. His new idea was to truncate the catenary where its 
slope is ±1. At those points the catenary makes a 45° angle with vertical, 
and so placing another copy of the truncated catenary to its right gives a 90° 
cusp that is a perfect receptacle for the corner of a square (Fig. 8). Continu-
ing yields an infinite bumpy road—though from the square’s point of view 

it is not bumpy at all! The derivative of cosh x is sinh x, so cusps occur 

when x = ±sinh-1 1, about ±0.88. To repeat the main point, the square will 
roll along this road with the center staying horizontal; therefore the move-
ment does no work against gravity and is, in essence, no different than a 
circle rolling along a straight line.

0 sinh-11 3 sinh-11 5 sinh-11

- 2

-1

0

1

10-1 2 3 4 4.53

Figure 8.  A square rolls smoothly along linked catenaries. The 

horizontal space needed to turn the square upside-down is 2 + 4 sinh-1 1, 
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 space  square upside-down
or about 5.53.

A subtle point is the nonlinear relationship between x and θ (Fig. 9). This 
means that if one pedals at a constant angular rate the forward motion will 
not be at constant speed. But the relationship is sufficiently close to linear 
that the issue is not noticeable in practice.

-
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-
3 π
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Figure 9.  The x vs. θ relationship, which relates forward motion to 

rotation, is close to linear, but not exactly linear.

With this template in hand, one can construct the road and a square-wheel 
device that rides smoothly along the road. Figure 2 shows Stan Wagon on 

the tricycle at Macalester College that he designed in 1997; the road is 25 

feet long. Figure 10 shows that Ripley’s Believe It or Not found this whole 
idea hard to believe. And Figure 11 shows the round variant built by the 
National Museum of Mathematics in New York City; the museum has built 
copies of the device for science education organizations in Singapore, 
Ukraine, and Brazil.
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Figure 10.  The square-wheel tricycle was featured in Ripley’s Believe It 
or Not.

Figure 11.  The circular version of the square-wheel tricycle at the 
National Museum of Mathematics in New York City. Photo by National 
Museum of Mathematics 〈http://momath.org〉.

There are two ways of building a simple model of a rolling square using, 
ironically, circles. A simple approach is to approximate the catenaries by 

quarter-circles of radius r = 4 /π and center (0, -r - 1); these values mean 
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quarter-circles ( )

that the circle and square have the same perimeter, so the square will roll 
without slipping (Fig. 12). Of course the center of the square will not stay 

horizontal; the maximum deflection is 2 - 1 - 2 2 - 2 π, about 0.041. 

The deflection indicates the extra work needed against gravity. The span of 

the road needed to turn the square upside-down is 8 2 π, about 3.60; this 

is 2% greater than the catenary case (4 sinh-1 1).

0 28 /π

-1

0

1

-1 1

Figure 12.  A square can roll on quarter-circles (red), but the square’s 
center will wobble up and down. The ideal road—catenaries—is shown 

in blue.

A more interesting approach is to follow the instructions posted by the 
Exploratorium [13]; there it is described how round cylinders can be used to 

make a road on which a square can roll in such a way that it jumps over the 
cusp (Fig. 13). Easy geometry shows that, for a square of side-length 2, the 

radius of the circle should be 1 2 - 1 + (π /4). In this approach the 

corners of the square never touch the road. Again, the square’s center moves 
up and down: the maximum deflection is 0.074. But the leap over the cusp 

means that the length of the part of the road that is in contact with the wheel 
to reach the upside-down position is quite small: about 2.62. Because 
friction at the contact point is a major contributor to the effort needed to roll 
the square, this is a big reduction in the amount of work. For the other 
methods the amount of contact is 4, the semi-perimeter. So this reduces the 
work against friction by about 33%. Also the span of the road needed to turn 

the square upside-down is about 3.33, compared to 3.53 for catenaries.
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Figure 13.  A square can roll on quarter-circles so as to avoid the cusp 

by jumping from one arch to the next. The center of the square will not 
stay horizontal.

The relatively simple fundamental equations allow one to investigate many 

road-wheel relationships (see [2]). One interesting result, discovered by 

Robison [7], is that there is only one wheel shape for which the road has the 
exact same shape as the wheel: the road is the parabola defined by 

y = -x2 -
1

4
 and the wheel is given by y = x2 -

1

4
 (see Fig. 14). To verify 

this, use the parabola’s polar form r = 1 / (2 - 2 sin θ) and definite integration 

as discussed earlier. The function x (θ) then is 

x =
1

2
cot

θ

2
 + 1 cot

θ

2
 - 1.

0-1 1

0

-
1

4

1

-1

Figure 14.  The parabola given by y = x2 -
1

4
 rolls on a reflected copy of 

itself.

The case of a triangular wheel is interesting and will be discussed in §7. A 
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 triangular  interesting
demonstration that allows the reader to see the road–wheel relationship for 
various other shapes can be found at [11]. 

5.  Bridge Design and Construction

The mathematics of the square wheel presents the general principle of how 

the bridge might be designed, but there were several tricky points. The 
width of the channel was fixed. The designer and engineer needed to 

maximize the clear height for passing boats and this was limited by the 
length along the channel. In its pedestrian mode the bridge must align with 

the approach road and the existing dam limited the size of the squares. 
Given these limits, the key design tasks were:

1.  The most significant and complex of these was understanding the 
abutment detail, where the square portal of the bridge interfaces with the
track on the bank. This detail needed to deal with issues including: 

•  Maintaining a smooth motion while eliminating any chance of the bridge 
sliding on the track.

•  Keeping the portals in line and in phase.

•  Dealing with the wear of interfacing components, and designing in their 
various lifespans and replacement strategy. 

•  Accommodating thermal expansion of the bridge.

•  Being able to see and remove debris on the track.

•  Drainage of the track surface.

2.  Designing a hand winch that would control the rolling of the bridge 
through 180° and be operated from just one bank of the channel. And a 
locking mechanism to keep the bridge stable in both the normal and inverted
positions.

3.  For the bridge to have a center of gravity very close to the geometric 
center the weight of the deck had to be minimized while retaining torsional 
stiffness.

4.  A lightweight rail was needed to act as a fall restraint, while also able to 

be folded down to give additional clearance for boats.

The footbridge is a simply supported structure with a monocoque steel deck 

spanning 7 meters. Two 5.5-meter rounded square portals at each end of the 
deck allow it to roll along a catenary track attached to concrete, which was 
in turn cast into the existing masonry walls. The upper section of each portal 
is counterweighted so as to raise the center of gravity close to the midpoint 
of the frame. The path geometry ensures that the midpoint stays horizontal 
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 path geometry  midpoint stays
when in motion so that the bridge weight is never lifted vertically (it is 
raised a little; see below). The bridge is moved by a cable attached to two 

manual winches on one bank; the winches work at a 19-to-1 ratio. The 
handrails are constructed from a welded lattice of steel reinforcement bars 
and they can be folded down for additional clearance when the bridge is 
inverted.

Like its Victorian forebears, the bridge design is tied to its functionality and 

its environment. Most of the structure is weathering steel, which has the 
desired strength, durability, and fabrication accuracy. Oak strips fixed to the 
hoops roll on the steel track, while precision-cut weathering steel teeth 

interlace with the steel pins. The rolling and guiding interfaces are kept 
separate, and the materials were chosen such that the softer component can 

be easily replaced within each interface, facilitating maintenance over its 
lifetime.

The geometry of the bridge track is based on the classic result that the road 

for a square wheel consists of inverted catenaries (§§3, 4). But the rounded 

corners, which were essential because of the gear teeth, required a new 

shape, and that was obtained by numerically calculating an elliptic integral, 
to get a curve that combines with the catenaries (see §6).

To predict the bridge behaviour during the roll, a staged analysis was carried 

out in parametric structural analysis software to assess how frictional effects 
affected the rotational and translational movement of the bridge. As the 
bridge is driven from one side only, ensuring adequate torsional stiffness 
was critical to prevent the portals skewing off course. Predictions were
made for the frictional forces and resulting cable tensions and tested on site 
prior to the completion of the mechanical system design.

Monitoring the weight and geometry of the bridge was vital, in both design 

and construction. Any increase or offset in weight will increase frictional 
forces, which determine pin sizes, cable tensions, and ultimately the overall 
deck structure. These constraints lead to an inherently efficient structure. 
The counterweight uses a combination of concrete, denser steel plates, and 

rebar to ensure all the added weight is located at the highest points of the 
two squares. The internal ribs are hollowed-out where the stresses allow, 
and even the steel name plaques adorning each portal act as part of the 
counterweight. The overall center of mass is 50 mm below the geometric 
center. This was done to make it clear which winch is doing the work in 

each direction; if the true center was used, this point might be confused by a 
strong wind. So when the bridge is being rolled to its inverted position, the 
center of mass is lifted slightly (4 inches in 36 feet, about a 1% grade) and 

in the reverse direction it moves slightly downhill and one winch acts as a 
brake, helped by the inherent rolling friction of the system.

Despite the simplicity of this movement, the design process and fabrication 

revealed complex and unique engineering challenges. The constraints of the 
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 complex  unique engineering challenges.
site, the geometry of the bridge movement and the forces in the bridge 
structure and cable are all carefully interlinked. This harmony had to be 
monitored at each stage, through design, fabrication, and installation.

6.  The Mathematics of the Cody Dock Bridge

The Cody Dock bridge uses teeth and pins to guide the rolling steel struc-
ture, and for those to fit, the right-angles must be eliminated. This is accom-
plished by rounding the corners in the most natural way: using quarter-
circles. Thus the wheel is the shape of the rounded square at left in Figure 
15. Of course, the straight part of the square rolls on a catenary, but the 
rounded corner rolls on a curved shape that must be worked out precisely. 

-1 0 2 3 4 4.5sinh-1(3/4)

-1

0

1

-1 10 1/2-1/2

Figure 15.  The wheel for the Cody Dock bridge is a square with 

rounded corners. The appropriate road consists of catenaries (blue), but 
an elliptic integral curve (cyan) is needed for the rounded corners. 

To understand the complications caused by the rounded corners, it makes 
sense to study the more general problem of finding the proper road on which 

a circle will roll. Of course a normal circle with its center of mass at its 
center rolls on a straight line. But here we are using an abnormal circle: one 
whose center of mass is outside the circle. A similar setup occurs in the 
classic case of a rolling line in §3, where the center of mass of the linear 
wheel is well outside the wheel. The shape of the appropriate road turns out 
to be quite surprising. We will take the wheel to have radius 1 with its 
center of mass at the origin and geometric center at (0, y0), where y0 ≤ -1. 

Figure 16 shows the wheel centered at 0, -3 2 ; this choice of y0 corre-

sponds to the Cody Dock case where the radius is 1 /4 and the square has 
side-length 2.
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Figure 16.  A wheel with center of mass at the origin and center 3 2  

below the origin.

Because the origin is outside the circle, it is not possible to describe the 
entire offset wheel in polar form. Such a wheel can be handled by represent-
ing it parametrically as g(t) = (g1(t), g2(t)), t ≥ 0. Then, from [2], the 
parametrization of the road on which it will roll is

     x(t) = ∫0
t g1(s) g2

′(s)-g1
′(s) g2(s)

g1(s)
2+g2(s)

2
 s, y(t) = - g1(t)

2 + g2(t)
2 .

Our circular wheel corresponds to g(t) = (sin t, y0 - cos t), and therefore

     x(t) = ∫0
t 1-y0 cos s

1+y0
2-2 y0 cos s

 s, y(t) = - 1 + y0
2 - 2 y0 cos t .

To evaluate the definite integral, we find the corresponding primitive. The 

change of variable s =
π

2
- u converts cosines to sines:

     
1-y0 cos s

1+y0
2-2 y0 cos s

 s = -
1-y0 sin u

1+y0
2-2 y0 sin u

u.

Factoring -y0 from the numerator and -2 y0 from the square root in the 

denominator, we get δ 
β+sin u

γ+sin u
u, where β = -

1

y0
, γ =

1+y0
2

-2 y0
, and 

δ = -
y0

2
. To find a primitive for 

β+sin u

γ+sin u
, we split the fraction into 

γ+sin u

γ+sin u
, which is γ + sin u , and 

α

γ+sin u
, where α = β - γ. Note that
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     γ + sin u = 1 + γ - cos
u

2
 - sin

u

2

2
= 1 + γ 1 -

2 sin
π

4
-
u

2

2

1+γ
.

Hence, we need

     1 + γ  1 -
2 sin

π

4
-
u

2

2

1+γ
u +

α

1+γ 
1

1-
2 sin

π

4
-
u

2

2

1+γ

u.

These primitives can be expressed in terms of the elliptic integrals, 

E (ϕ m) = ∫0
ϕ
1 -m sin2 t  t and F (ϕ m) = ∫0

ϕ
1 -m sin2 t

-1/2
 t; we 

obtain

     -2 1 + γ E
π

4
-

u

2

2

1+γ
 +

-2 α

1+γ
F

π

4
-

u

2

2

1+γ
.

Recalling that the primitive has to be multiplied by δ and that u =
π

2
- s, we 

find

     
1-y0 cos s

1+y0
2-2 y0 cos s

 s = 2 δ 1 + γ E
s

2

2

1+γ
 +

α

1+γ
F

s

2

2

1+γ
 =

(1 - y0) E
s

2
-

4 y0

(1-y0)
2  + (1 + y0) F

s

2
-

4 y0

(1-y0)
2 

.

One can use computer integration to avoid all this algebra. The following 

Mathematica code gets the primitive with no trouble.

FullSimplify
1 - y0 Cos[s]

1 + y02 - 2 y0 Cos[s]
s, y0 < -1

- (-1 + y0) EllipticE
s

2
, -

4 y0

(-1 + y0)2
 +

(1 + y0) EllipticF
s

2
, -

4 y0

(-1 + y0)2


This primitive vanishes when s = 0. Therefore if we replace s by t, we get 
the definite integral from 0 to t, and the parametrization of the road is

     x(t) = (1 - y0) E
t

2
-

4 y0

(1-y0)
2  + (1 + y0) F

t

2
-

4 y0

(1-y0)
2 ,

y(t) = - 1 + y0
2 - 2 y0 cos t

.

It is a bit of a surprise to learn that the road — the parametric plot of the 
preceding formula — is a sequence of loops (Fig. 17). It is therefore impossi-
ble to build a physical model for the entire wheel, but the bridge’s corners 
require only a small piece of the loopy structure.
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Figure 17.  The loopy road for an offset circular wheel centered at 

0, -3 2 . The center of mass at the origin oscillates right and left as 

the wheel moves through the loops.

Figure 18 shows how the offset circle rolls around the loops. It can be hard 

to visualize this motion, so in the figure y0 = -1.5, which eliminates the 
intersections of the loops. For a full animation of this pendulum-like motion 

see [11]. The center of mass starts moving to the right, but then swings back 

to a point farther left than its starting position, then swings to the right, and 

so on. When y0 is less than -2.41 the center of mass moves left of the y-axis 
during the first oscillation.  

Figure 18.  This sequence shows how the offset wheel moves pendulum-
like as the the circle rolls around the loops. The center of mass at the 
origin oscillates right and left as the wheel rolls along the loops.

As y0 approaches -1, the limit of the loopy curves is a sequence of semicir-
cles. Strictly speaking, this curve is not a solution of our differential equa-
tion, because the denominator of the right-hand side vanishes at the cusps. 
And there is another plausible solution for y0 = -1, a circle of radius 2. The 
wheel will roll inside this larger circle, and the center of mass oscillates 
back and forth along the x-axis; this setting is a special case of a hypocy-
cloid where the stationary circle has twice the radius of the moving circle.

We now return to the bridge, a square with rounded corners; the road is a 
composite curve made by combining parts of two very different functions. 
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composite  by combining parts  very
The road starts with the familiar catenary, y = -cosh x, to handle the straight 
part of the wheel. But when the rounded corner enters the picture, we need a 
part of the loop shown in Figure 17. Then of course another catenary, then 

another loop, and finally a catenary for the last step that completes the 
turning of the square upside down. Figure 19 shows how the parts of the two 

functions are combined to get the composite track that works for the bridge.

-0.5 0 0.5 1. 1.5

-1.5

-1

-0.5

0

Figure 19.  The track for the bridge (thick curves) combines the familiar 
catenary (red) and a small piece of the loopy road defined by elliptic 
integrals (blue).

Here is an interesting simplification. The preceding parametrization of the 
road for an offset round wheel used two elliptic integrals, E and F. Yet it is 
possible to express the part needed for the bridge using E only. The reason 

is that we can consider only the first corner, which is a quarter circle that is 
easily expressed in standard polar form. Take the width of the square to be 2 

units and let b be the rounding radius. Easy geometry leads to this polar 

form for the lower right corner, where b denotes 1 - b, B(b) = cot-1(b) and 

-B(b) ≤ θ ≤ B(b) -
π

2
:

     r(θ) = 2 b cos
π

4
+ θ + b2 - 2 b

2
sin

π

4
+ θ

2
.

The initial straight part of the wheel has length 1 - b, and corresponds to 

-π /2 ≤ θ ≤ -B(b). The corresponding part of the road, part of the catenary 

y = -cosh x, ends in a point whose x-coordinate is sinh-1(b). To get the next 
part of the road, we need to calculate

     x(θ) = sinh-1(b) + ∫-B(b)
θ

 2 b cos
π

4
+ ρ + b2 - 2 b

2
sin

π

4
+ ρ

2
 ρ

= sinh-1(b) + ∫-B(b)
θ

α cos
π

4
+ ρ + b 1 - β2 sin

π

4
+ ρ

2
 ρ

for θ ∈ [-B (b), B (b) - π /2], where α = 2 b and β = 2 b /b.
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Since cos
π

4
+ ρ =

cos ρ-sin ρ

2
 has primitive 

sin ρ+cos ρ

2
 and 1 - β2 sin

π

4
+ ρ

2
 

has primitive E 
π

4
+ ρ β2, we get

     x(θ) = sinh-1(b) +
α

2
(sin θ + cos θ - sin(-B(b)) - cos(-B(b))) +

bE 
π

4
+ θ β2 - E 

π

4
- B(b) β2.

Simplifying gives

      

x(θ) = sinh-1(b) + b E θ +
π

4

2 b
2

b2
+ E

π

4
- B(b)

2 b
2

b2
+ b (cos θ + sin θ) +

b b

1+b
2
.

Having the two pieces of the road, we can extend them using periodicity to 

give a single road function (x(θ), -r(θ)) that can be plotted parametrically. 
Note that we cannot solve x = x (θ) for θ to get the road in the form y = f (x). 
This approach via a single elliptic integral is how the bridge designers 
obtained the proper shape for the road.

The use of a square for the bridge shape is somewhat unnatural. It works, 
but one might ask whether a circle would work just as well, as a circle can 

roll on a straight line. It can be done, but the track will take up more horizon-
tal space than the track for the square. The wheel in Figure 20 turns upside 
down when rolled on its semicircular part and has a deck of 2 units and
clearance of 2 units, for comparison with the square. The radius of the 

semicircle is 2  and the overall track length is π 2 + 2, or 6.44, com-
pared to about 5.5 for the square. There are other ways to get an invertible 
bridge with a nicely short track, discussed in the next section.

-1 0 1 2 3 4 51+ 2 π

-1

0

1

Figure 20.  The rolling part of the bridge frame can be a semicircle, but 
the overall track length is larger than that for the square wheel.

7.  Triangular Wheels

A triangle is even farther from a circle than a square, though the square is 
embedded in the public consciousness as the true opposite of a circle. But 
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 public  opposite
the triangle is extremely interesting from the rolling perspective. As discov-
ered by Hall and Wagon [2], a triangle cannot physically roll on the appropri-
ate catenaries because a corner crashes into the road before it strikes the 
cusp (Fig. 21, left). But, borrowing an idea from the Cody Dock bridge, we 
can get a rolling triangle if we round the corners. If the triangle side mea-
sures two units, then the minimal rounding radius that eliminates the 
collision is approximately 0.0831. Finding this value is an interesting 

problem in numerical optimization: Given a rounding radius, we check all 
possible positions of the wheel on the road to see whether a collision occurs. 
Repeating this procedure gets us the minimum rounding radius for which no 

collision occurs. Note that the triangle faces a steeper slope than the square 
does, so for a physical model one must use materials that prevent slippage 
when the contact point is at a steep spot on the road.

-0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

-0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

Figure 21.  Left: A triangle cannot work as a wheel because there is a 
serious collision between a vertex and the catenary road. Right: 
Rounding the corners by 5% (the rounding radius as a percentage of the 
side length) eliminates the collision.

To get the equation of the road for the rounded triangle we start with the 
triangle centered at (0, 0). The start of the road will be part of a catenary. 
Then we need to accommodate the first rounded corner; after that we can 

just extend periodically. The corner is not easily expressed in polar form 

r = r(θ), because for a circle in a general position, the relation between r and 

θ is a quadratic equation in r. (The case of a square wheel with rounded 

corners is special, because the centers of the circles are on the lines y = ±x 
leading to considerable simplification.) So it is again easier to represent the 
circular corner as a parametric curve g(t) = (g1(t), g2(t)); the corresponding 

part of the road (see Fig. 21, right) is a part of the loopy curve discussed in 

§6.

The triangular frame does not work well for a bridge because the acute 
angles interfere with passage along the deck. But we can truncate the shape 
to get a pentagon that works nicely: its perimeter is less than that of the 
square and so it can be rolled upside-down in less space than the square 
requires; see Figure 22.
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Figure 22.  A pentagonal shape can be inverted using three catenaries 
(blue). The red curve shows the track for a square (shown in gray) with 

the same size bridge deck.

8.  Conclusion: The Perfect Catenary

Catenaries have been used in bridge construction for a long time. An 

inverted catenary is the shape that forms the strongest arch, and so one
sometimes sees such curves in the arches supporting a bridge from below. 
More common is a catenary arising as the shape of a cable holding a bridge 
from above, as the hanging-chain form is the definition of a catenary (from 

catena, Latin for chain). The Cody Dock bridge is a completely new use of 
catenaries in bridge construction, as the curve lies below and to the side of 
the bridge and allows the bridge to be turned upside-down. Moreover, the 
traditional appearance of catenaries is imperfect: for example, the weight of 
the bridge deck means that the cables for a bridge do not form exact catenar-
ies. But the Cody Dock bridge uses a perfect catenary for the surface on 

which the straight part of the bridge rolls. 
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