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Fix an interval I = [c,d) C [0, 1), and let L be the length of the interval: L =d —c¢ > 0.
For any a € [0,1) and any irrational £ > 0, let x,(a,&) = a +n€ mod 1. For N € Z*, let
[N]={1,2,...,N}, and let

sn(a,§) = [{n € [N] : zn(a,§) € 1},

fn(a,§) = SN(]?/ €>-

We want to prove: limy_,o fnv(a,&) = L.
We start with a couple of lemmas:

Lemma 1. Suppose that x < y. Then
y—r—1<|z,y)NZl <y—z+1.

Proof. 1t is not hard to see that |[z,y) NZ| = [y] — [z]. The conclusion now follows from
the following facts:

[yl =Tzl =y—ao+(yl —y) = (Je] —2),  0<[e] -z [yl -y <l O
Lemma 2. For sufficiently large N,
L —2¢ < fn(a, &) < L+ 2¢.

Proof. Since a and & will be fixed throughout the proof of the lemma, we write z,,, sy, and
fn for z,(a,§), sn(a, &), and fy(a,§).
Notice that for any positive integer n, x,, € I if and only if there is some integer £ > 0
such that
k+c<a+né<k+d.

Let
By={neZ :k+c<a+né<k+d}

Then it is easy to see that the sets By, form a partition of {n € Z* : x,, € I'}. The definition
of By is equivalent to

Bk:{n€Z+:k+g_a§n<k+Z_a}—{k+g_a,k+g_a)ﬂz+.

Since a € [0,1), if £ > 1 then (k+c¢—a)/{ > 0, so we can apply Lemma 1 to conclude that
k+d—a k+c—a
& ¢

Since d — ¢ = L this simplifies to

k—l—d—a_k—l—c—a

¢ ¢ + 1.

—1<|Bk’<

L L
——1< Bk < —+1.
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For k = 0, the restriction that elements of By must be positive integers may reduce the
number of elements, so all we can say is that

L
‘BO| < g—f—l

Now consider any N € Z*, and let K = |a+ N¢|. We will assume that N is large enough
that K > 2. Then

K-1

{n€[N]:z, eI} =] Bu(BkN[N]).

Using the bounds on the sizes of the sets By, we conclude that

Q(—D(§—1)<SN<Q{+D<£+1>

£
By the definition of K, we have

K<a+NéE<K+1,

% K K+1
— oy BT
£ £
Since a € [0,1), it follows that
K—-1 K+1
<N < ——.
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Putting together our bounds on sy and N, we have

(K -1D(L/E-1)

sy _ (K+1D(L/E+1)

< =< ,
(K+1)/¢ N (K —1)/¢
which simplifies to
K—-1 K+1
— (L — (L :
K41 ( §)<fN<K_1 (L+¢)
It is clear that if K is large enough, then we will have

K—1 K+1
w1 L-9>L-2% o (LHO<L+%

and therefore

L—-2¢ < fy <L+ 2
And by choosing N large enough, we can ensure that K is large enough to get this conclusion.
This proves the lemma.
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Now we're ready to prove that limy . fn(a,§) = L. Suppose € > 0. Using the density of
(n€ mod 1) in [0, 1), choose some M such that 0 < (M¢ mod 1) < €/2. Let £ = M¢ mod 1.
Now we break the sequence (z,(a,£)) up into M subsequences, as follows:

xl(aa 5)7 IL’1+M(6L, 5)7 x1+2M(av f)’ ce

:L’2(a, 5)7 :C2+M(a’7 6)7 I2+2M(CL, f)? te

zy(a, €), waps(a, ), x3pr(a, &), .. ..
Notice that for any n € Z*,
Trsm-nm(a, &) =a+ (1+ (n—1)M)E mod 1 = (a + & — ME) +né mod 1.
If we let a1 = a+ & — ME& mod 1, then this means that

$1+(n—1)M(a,f) = xn(ahg)-

In other words, the first row in (1) is the sequence (x,(a1,€)). Similarly, we can define
numbers as, ..., ap € [0,1) so that for 1 <k < M, row k of (1) is (z,(ax,§)).
Now let N > M be any integer. For 1 < k < M, let Ny = [(N —k)/M] + 1. Then

the first N terms of (z,(a,&)) consist of the first Ny terms of (z,(ax,§)), for 1 < k < M.
Therefore

M=

SN(a7§> = SNk(akag)a
k=1
SO y B u B u
~ 2 snean €)oo N s (@) o Ne A

In other words, fy(a,§) is a weighted average of the numbers fy, (ax,§).

Now we apply Lemma 2 to the sequences (x,(ax, £)) to conclude that if Ny, is sufficiently
large, then L —2¢ < fy, (ay, &) < L+2€. Since € < €/2, this means that L —e < fy, (ax, &) <
L + €. By choosing N sufficiently large, we can ensure that his holds for all k£ from 1 to M,

and therefore L — e < fy(a,§) < L + €, as required.



