Let the vertices of a triangle be A, B, and C and the lengths of the sides opposite A, B, and C be $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c respectively. Then with three applications of the Pythagorean Theorem we can show that the square of the length of the median from A is $2 b^{\wedge} 2+2 c^{\wedge} 2-a^{\wedge} 2$ and similarly for medians from B and from C. The medians intersect $2 / 3$ of the way from the vertex to the opposite side.

Putting all this together we see that the squares of the lengths of the sides of triangle $\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3$ are:

$$
a^{\wedge} 2 \quad 2 b^{\wedge} 2+2 c^{\wedge} 2-a^{\wedge} 2 \quad 4 b^{\wedge} 2
$$

And the squares of the lengths of the sides of triangle T1 are:

$$
\left(2 b^{\wedge} 2+2 c^{\wedge} 2-a^{\wedge} 2\right) / 9 \quad a^{\wedge} 2 \quad\left(2 a^{\wedge} 2+2 b^{\wedge} 2-c^{\wedge} 2\right) 4 / 9
$$

Where T 1 sits on the side of length 2 a ,
Then $\mathrm{T} 1 \sim \mathrm{~T} 1+\mathrm{T} 2+\mathrm{T} 3 \rightarrow \mathrm{a}^{\wedge} 4=\left(\left(2 \mathrm{~b}^{\wedge} 2+2 \mathrm{c}^{\wedge} 2-\mathrm{a}^{\wedge} 2\right)^{\wedge} 2\right) / 9 \rightarrow$

$$
3 a^{\wedge} 2=2 b^{\wedge} 2+2 c^{\wedge} 2-a^{\wedge} 2 \rightarrow
$$

$$
2 a^{\wedge} 2=b^{\wedge} \wedge 2+c^{\wedge} 2 \text { which is the main equation. }
$$

Plugging the main equation into the $2^{\text {nd }}$ item in the $1^{\text {st }}$ line $\&$ the $1^{\text {st }}$ and $3^{\text {rd }}$ items in the $2^{\text {nd }}$ line the two triplets become

$$
\begin{array}{ccc}
a^{\wedge} 2 & 3 a^{\wedge} \wedge^{2} & 4 b^{\wedge} 2 \\
\left(a^{\wedge} 2\right) / 3 & a^{\wedge} 2 & \left(4 b^{\wedge} 2\right) / 3
\end{array}
$$

So the main equation is equivalent $\mathrm{T} 1 \sim \mathrm{~T} 1+\mathrm{T} 2+\mathrm{T} 3$. The main equation is also equivalent to the other 5 similarities and the constants of similarity are all $\sqrt{3}$. The similarities can be permuted by letting T 1 sit on the other two sides giving 12 new similarities.

We started with sides $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c but if we divide everything by 2 , the similarities remain and so does the main equation. So all we need to do to finish is to find 3 integers a, b, and c with minimal sum which forms a non-trivial triangle and satisfies the main equation. This can be done by a manual hunt.

It is possible to shorten the hunt by observing from the main equation that a must be between b and c. So we can set one of $b \& c$ equal to $a-x$ and the other to $a+y$ for some integers x and y. Then we must have $x^{\wedge} 2+y^{\wedge} 2=2 a(x-y)$. Clearly x and y must both be odd or both even, But if they both odd then the LHS $=2 \bmod 4$ while the RHS $=0 \bmod 4$ so they are both even, moreover $x>y>0$. So now we can restrict our hunt to $(x, y)=$
$(4,2) \rightarrow a=5$, with $b \& c=1 \& 7$, which is not a triangle;
$(6,2) \rightarrow \mathrm{a}=5$ with $\mathrm{b} \& \mathrm{c}=-1 \& 7$, which again is not a triangle; and
$(6,4) \rightarrow \mathrm{a}=13$ with $\mathrm{b} \& \mathrm{c}=7 \& 17$ which is a triangle and we are done.
$(8,2) \rightarrow$ a not integral
$(8,4) \rightarrow 2 \mathrm{x}(4,2)$
$(8,6) \rightarrow \mathrm{a}=25$ with $\mathrm{b} \& \mathrm{c}=17 \& 33$. Much bigger than $(7,13,17)$ which appears to be the answer because other potential answers are likely to have perimeters greater than 37 .

