Problem 1200 was solved by David Broadhurst, Michael Elgersma, John Sullivan, and Witold Jarnicki. Here is the solution by Michael Elgersma, Minneapolis.

Given wind speed $\|w\|$, circular ground-track radius r, vehicle airspeed $\|v\|>\|w\|$, and time T to fly one circle, find an equation that relates the four variables; then solve for T in terms of the others.

The vehicle velocity vector u over the circular ground track is given by the following two equations, where $\theta(t)$ is the angle locating the position of the vehicle on the track. (1) follows from the fact that the airplane's postion is $r(\cos \theta(t), \sin \theta(t))$.
(1) $u=r \theta^{\prime}(-\sin \theta, \cos \theta)$
(2) $u=w+v$ (see diagram)

The Law of Cosines gives (3) $\|v\|^{2}=\|u\|^{2}+\|w\|^{2}-2\|u\|\|w\| \cos \theta$
Using (1) in (3):
(4) $\|v\|^{2}=\left(r \theta^{\prime}\right)^{2}+\|w\|^{2}-2 r \theta^{\prime}\|w\| \cos \theta$

Solving (4) for $r \theta^{\prime}$
(5) $r \theta^{\prime}=\|w\| \cos \theta+\sqrt{\|v\|^{2}-\|w\|^{2} \sin ^{2} \theta}$

Integrating (5) and solving for T gives:
$T=\int_{0}^{T} d t=\frac{r}{\|v\|} \int_{0}^{2 \pi}\left(\frac{\|w\|}{\|v\|} \cos \theta+\sqrt{1-\left(\frac{\|w\|}{\|v\|}\right)^{2} \sin ^{2} \theta}\right)^{-1} d \theta$
This last expression is an elliptic integral and can be expressed as follows (eliminating || ||):
$T=\frac{4 r v}{v^{2}-w^{2}} E\left(\frac{w^{2}}{v^{2}}\right)$
where E is the elliptic integral of the second kind (Elliptice in Mathematica). Such functions can be evaluated very quickly using ideas related to the arithmetic-geometric mean. See, e.g., http://www.ams.org/notices/201208/rtx120801094p.pdf.

So to solve the problem given just use basic root-finding. In Mathematica, using $1 / 2$ hour as the time.
$r=10 ; v=145 ;$ FindRoot $\left[\frac{1}{2}=\frac{4 r v E l l i p t i c E\left[\frac{w^{2}}{v^{2}}\right]}{v^{2}-w^{2}},\{w, 1\}\right]$
$\{w \rightarrow 60.1167\}$
Now FindRoot has some overhead and precision control that is generally a good thing, but that can be eliminated. The Mathematica code below implements Newton's method, with some algebra used to simplify the Newton iterate, F. Precision is bootstrapped: ie., it is doubled at each iteration. Newton's method is iterated 18 times. This is complete code to get a million digits in 26 secs. One should compare the iterates to gain evidence for correctness. David Broadhurst, using PARI, used a direct AGM approach to calculate the two elliptic integrals simultaneously, and also tried the quartic Householder method. He got a million digits in under ten seconds.

$$
\begin{aligned}
& F\left[z_{-}\right]:=\left(r=\frac{z^{2}}{21025} ;\right. \\
& q=z^{2}-21025 ; \\
& t=\frac{q}{\text { EllipticE }[r]} ; \\
&\left.z\left(1+\frac{q\left(\frac{t}{11600}+1\right)}{z^{2}+21025+\text { EllipticK }[r] t}\right)\right) ; \\
& p= 2 ; \operatorname{Nest}\left[\left(p=\operatorname{Min}\left[10^{6}+5,2 p+2\right] ;\right.\right. \\
& \quad=\operatorname{SetPrecision}[\#, p] ; \\
& \quadF[s]) \&, 60 ., 18]
\end{aligned}
$$

Following Broadhurst's advice and using an AGM approach to EllipticK as follows knocks the time down to 16 seconds for a million digits.
EllipticKAGM[m_] $:=\pi /(2$ ArithmeticGeometricMean $[1, \sqrt{1-m}])$
The million-digit result is as follows where the total number of digits is one million.

